Sloužíme jako informační portál pro všechny, kteří se zajímají o lasery a světlo jako takové.
Dětem, studentům a široké veřejnosti zodpovíme veškeré otázky.

Obranné lasery – Ing. Tomáš Primus

By |

Historie laserů sahá do 60. let minulého století. Od té doby se začínalo uvažovat o možnostech použití laserů pro obranu. Za prezidenta Reagana v 80. letech se v USA začaly objevovat první nápady na využití laserů jako obranných zařízení proti létajícím objektům. Stále však nebyl vývoj laserů tak daleko, aby se tyto plány mohly uskutečnit, avšak myšlenka zůstala a americká vláda začala financovat první výzkumy v oblasti obranných laserů. Druhou myšlenkou, která se v souvislosti s lasery a jejich využitím v boji diskutovala, bylo využití laserů proti vojákům s cílem ochromit jejich vidění, popř. další měkké tkáně. To ale bylo zavrhnuto jako nehumánní a jedinou vývojovou linkou tak zůstalo využít laserů pro obranu proti létajícím objektům. Myšlenka se stala skutečností v roce 2014, kdy námořnictvo Spojených států instalovalo první obranný laser na letadlové lodi USS Ponce. Po několika letech výzkumu a utracení více než 40 milionech amerických dolarů byl na světě první funkční laserový obranný systém s názvem LaWS (Obr. 1). Jednalo se o pevnolátkový 30kW laser, který vzdáleně připomíná teleskop pro pozorování hvězd. Právě vývoj optiky pro takovéto lasery je problematický, protože na rozdíl od čoček, které se v průmyslu používají pro fokusování paprsku a mají ohniskovou vzdálenost v jednotkách centimetrů, je zde třeba fokusovat paprsek na vzdálenost stovek metrů. Nová generace laserového systému LaWS má efektivně eliminovat cíle až na vzdálenost 1,5 km. Myšlenými cíli jsou zejména drony, nebo nepřátelské čluny. Díky kamerovým systémům a propracovanému systému navádění dokáží obranné lasery velmi rychle zaměřit a eliminovat nepřátelské cíle. U plujících člunů to může být vyřazení motoru, u letícího dronu třeba zničení vrtulí.

Obr. 1 – Obranný systém LaWS využívající 30kW vláknový laser

Umístění prvních obranných laserů právě na lodě mělo i svůj význam. Lasery spotřebovávají velké množství energie, je potřeba je chladit a jsou poměrně rozměrné. Dále se testovala jejich odolnost proti slanému mořskému prostředí a rozmarům počasí. Vývoj jde stále dál a snahou je systémy zmenšovat, tak aby bylo možné jejich použití i na obrněných vozidlech pro eliminaci cílů na souši.
A jaká je hlavní myšlenka použití laserů ve vojenství? Jsou to určitě provozní náklady, kdy jedna střela, řekněme sestřelení, protože se tyto systémy jen málo kdy mílí, stojí jednotky dolarů. A oproti raketám, které stojí několik tisíc dolarů, mají obranné lasery velký potenciál. I to si uvědomují velké zbrojařské velmoci a vývoj laserů významně podporují.
V letošním roce má námořnictvo USA pořídit od firmy Lockheed Martin nové generace laserů LaWS za 150 miliónů dolarů. A to není všechno. Zároveň se diskutuje o dalším kontraktu za miliardu dolarů. Další vývoj je jasný, a to směrem ke větším výkonům používaných laserů. Ten má v následujících pěti letech dosáhnout až desetkrát víc, než první obranné lasery, a to až 300 kW. Zároveň je snaha o snížení hmotnosti a velikosti celého systému, zvýšení účinnosti (přeměna elektrické energie na světelnou) a využití umělé inteligence pro rychlou eliminaci více cílů.

obr.2 – Ukázka použití obranných laserů pro sestřelování dronů

obr. 3 – Vývoj obranných laserů a jejich aplikace na bojová vozidla

Co stojí za zmínku tak jsou i aktuální nevýhody obranných laserů. Je to zejména jejich použitelnost, protože aby mohl být laser použit potřebuje nějaký čas pro uvedení do provozu, zahřátí. Zároveň jsou současné systémy náročné na spotřebu energie a potřebu chlazení, což činí celý sytém velmi robustním. Posledním problémem je použitelnost za dobrých vizuálních podmínek a na cíle, které se nacházejí v dostřelu, což je třeba pouze 1-2 km od laseru. Vše si výzkumné týmy uvědomují a v následujících letech chtějí tyto nevýhody eliminovat. Pokud se to povede bude možné používat lasery např. pro sestřelování balistických raket v jakékoliv fázi jejich letu.
Vývoj jde stále dopředu a použití laserů pro obranu dostává stále nový rozměr a použitelnost.

https://www.theatlantic.com/politics/archive/2014/12/a-brief-history-of-militarized-lasers/453453/

https://www.lockheedmartin.com/en-us/news/features/2019-features/how-laser-weapons-are-changing-the-defense-equation.html

https://www.militaryaerospace.com/sensors/article/16722085/military-eyes-prototype-megawattclass-laser-weapon-for-ballistic-missile-defense-in-next-seven-years

https://breakingdefense.com/2014/12/star-wars-at-sea-navys-laser-gets-real/

https://www.spacedaily.com/reports/Navy_orders_laser_weapon_systems_from_Lockheed_Martin_999.html

Lasery v medicíně

By |

Jak jistě víte, laserová záření mají mnohá použití. S jejich pomocí můžeme svařovat, řezat, provádět diagnostiku materiálů, vyrábět zábavní techniku a to zdaleka není všechno. V tomto článku se však budeme zaobírat jejich využitím v medicíně. Musíme si nejprve uvědomit, že lasery využívají velké množství energie, která však může být pro lidské tělo i nebezpečná.

Nejdříve si připomeňme, co vlastně laser je. Laser (Light Amplification by Stimulated Emission of Radiation) je optický zdroj koherentního a monochromatického elektromagnetického záření a je tvořen několika částmi. Těmi hlavními jsou aktivní prostředí, rezonátor a buzení (zdroj energie).

Abychom mohli říci, jak dopadne interakce laserového záření s tkání, musíme znát nejen parametry záření ale také biologické tkáně, se kterou přijde do styku. Dále záleží na typu interakce (primární nebo sekundární. Nejdůležitějšími parametry laseru je délka pulsu (doba, po kterou je tkáň vystavena záření), vlnová délka záření a hustota energie dopadající na tkáň. Typy tkání, které mohou být zasaženy laserovým zářením, jsou dva: tvrdé tkáně (sklovina, kost nebo kalcifikovaná tkáň cév) a tkáně měkké (ostatní tkáně).

Mezi primární typ interakce patří reflexe, absorbce, rozptyl, transmise a refrakce. Refrakce (lom) hraje významnou roli v ozařování transparentního média (tkáň rohovky). Při absorpci záření je nutné tkáně před i po zákroku chladit (ablativní fotodekompozice). U sekundárních parametrů (fotochemická interakce, teplotní interakce, fotoablace, plasmou indukovaná ablace a fotodisrupce) je třeba brát v potaz, že důsledky zásahu tkáně zářením nemusí být pouze chtěné (při operaci), ale mohou se vyskytnout také některé nežádoucí (zahřívání tkáně atd.).

První odvětví medicíny, kterému se budeme věnovat, je oftalmologie. Nejčastěji léčenou tkání v tomto odvětví je oční sítnice (protržení, odchlípnutí, diabetická retinopatie, stařecká degenerace, nádor). Abychom si přiblížili proces operace, vybereme si specifické onemocnění, na kterém si výhody použití laseru vysvěltíme. Diabetická retinopatie je onemocnění sítnice, které vzniká při cukrovce. Příznaky této nemoci jsou například zhoršení ostrosti vidění a vznik tmavých skvrn v zorném poli. Některé cévy v oku odumírají kvůli nedostatku kyslíku, aby však bylo i nadále zajištěno proudění do kyslíku do oka, tvoří se nové cévy, které však rostou na nesprávném místě (před sítnicí). Tyto nově vytvořené cévy způsobují krvácení do sklivce. Na léčbu sítnice se používá argonový laser (514 nm), kryptonový laser (568 nm) a Nd:YAG laser (532 nm). Léčba však nemoc pouze stabilizuje nebo zpomalí, k obnovení zraku nedochází.

Glaukom (zelený zákal) je onemocnění očí, které bez léčení může skončit trvalou ztátou zraku. Příznaky nemoci nejsou patrné až do doby, kdy se naruší centrální vidění. Možností léčby tohoto onemocnění je několik, zkusíme si tedy přiblížit alespoň některé. Laserová iridotomie je metoda léčby při které se vytváří otvor v plné tloušce duhovky. Před zákrokem, který je prováděn laserem, jenž je připojen ke štěrbinové lampě,  je pacientovi aplikována lokální anestezie. Při této metodě  se používá Nd:YAH (pro světlé duhovky)  nebo argonový (pro tmavé duhovky), Dalším možným zákrokem je cyklofotokoagulace. Principem této léčby je osvícení řasnatého tělíska pomocí výkonného laseru (Nd:YAG nebo diodový laser). Po ozáření se sníží tvorba nitrooční tekutiny, díky čemuž dojde i ke snížení nitroočního tlaku.

V dermatologii má laser široké využití při hojení jizev, ran, proleženin nebo třeba pigmentových skvrn. Pro tyto účely se využívají lasery s nízkým výkonem, díky čemuž lze dosáhnout biostimulace buněk tkáně. Léčba je potom velmi rychlá, efektivní a komfortnější pro pacienty. Pro kosmetické vady, jako je například akné nebo nechtěné ochlupení, se využívá termodestrukce, tento zákrok má zpravidla několik fází. Vždy je laser zamířen na melaninové buňky, které má zničit.

Chirurgický laser může fungovat na dvou psrincipech. Prvním z nich je odpařování kapalin z měkkých tkání, zatímco druhý princip je založen na rozbíjení molekulárních vazeb látek, které se nacházejí v tkáni. V chirurgii se při malých zákrocích, jako je například odstranění zarůstání nehtů, používá povrchový CO2 laser. Neodymový laser (1064 nm) spolu s rubínovým vodícím paprskem zase nachází své uplatnění při zástavě krvácení.

Využití laseru nese mnohé výhody i v odvětví urologie, v tomto případě jsou ale zákroky vykonané pomocí laseru pouze alternativou. Hlavním důvodem, proč se využití laserového záření dostává do popředí, je zkrácení doby léčby po operaci a také menší počet reoperací. Nejčastěji využívanými lasery v urologii jsou Holmium:YAG (2140 nm) a KTP lase (532 nm).

V gynekologii se laser nejčastěji používá k zacelování ran a k léčbě jizev. Lasery používané k zákrokům na sliznici však musí mít delší vlnovou délku, jelikož je sliznice na působení laseru citlivější než například kůže.

V revmatologii se laser používá při léčbě artróz a dalších onemocnění, v tomto případě je léčba vždy doprovázena léky. Díky protizánětlivým účinkům laseru (830 nm) se z něj stala samozřejmá součást standardní výbavy ve specializovaných pracovištích. Laser se také používá při rehabilitaci. Povchová aplikace se používá na léčbu jizev, kde se pro plošnou aplikaci využívá laserový scenner.

Ve stomatologii se využívá silného laseru místo zubních vrtaček. Výhodou jeho použití je menší bolestivost po zákroku. Široké využití má laser u zánětlivých onemocnění, paradontózy a při zvyšování odolnosti zubní skloviny.

Oftalmologický laserový systém

Odstranění mateřských znamének laserem

 

 

Buňka pro laserové svařování

Technologie svařování laserem

By |

Autor: Ing. Tomáš Primus, ČVUT

Spolu s vývojem potřeb trhu se vyvíjí i technologie laserového svařování. Progresivní rozvoj v posledních letech zaznamenala tato technologie zejména kvůli vývoji nových, vysokovýkonných diodových a vláknových laserů a dále také s vývojem robotů a automatizace. Laserové svařování je nejvíce zastoupené v automobilovém, leteckém, kosmickém, jaderném a lodním průmyslu. Dále také všude tam, kde jsou kladeny vysoké požadavky na kvalitu svaru, hloubku průvaru a vzhled. Laserové svařování využívá dvě základní techniky podle intenzity laserového paprsku. Při nižších intenzitách se využívá technika kondukčního svařování. Ta je založena na natavení povrchu materiálu a vytvoření spoje při jeho zchladnutí. Výsledný svar je mělký a velmi podobný svarům při obloukovém svařování. Při použití vyšších intenzit laserového paprsku dochází k penetračnímu svařování, kde se ve svarové lázni vytvoří dutina zvaná keyhole. Pro tuto metodu je typický štíhlý, dlouhý svar. Metodou kondukčního svařování se typicky svařují plastové materiály, metodou keyhole se svařují kovové materiály. [1] [2] [3]

Technologie laserového svařování – kondukční a penetrační způsob [11]

Pro svařování laserem se využívají pevnolátkové i plynové lasery, nejvíce s aktivním prostředím CO2, Nd:YAG a aktivního vlákna. V poslední době se dostávají do popředí i diodové lasery. Obecnou výhodou při použití pevnolátkových laserů je možnost vést paprsek v optickém vlákně kvůli snadnému dopravení paprsku od zdroje do procesní hlavy. Dále je tím také podpořena možnost polohování ve více osách – typicky svařování robotem. [3] [4]

Buňka pro laserové svařování

Buňka pro laserové svařování s využitím laseru a polohovacího stolu [4]

Výkon laserů pro svařování se liší podle materiálu a použité technologie. Pro svařování ocelí se používají lasery s výkonem jednotek až desítek kW. Nejvyšší aktuálně dosažení výkon svařovacích laserů je 120 kW a tento laser se používá pro svařování lodních trupů.

Na začátku tohoto článku byly zmíněné hlavní techniky laserového svařování, z nich pak vychází další, které nejsou tolik známé, ale mají velký potenciál. Tou první, kterou bych zmínil, je technika od firmy IPG [5] a jejím hlavním smyslem je nahradit techniku bodového (odporového) svařování v oblastech vysoce namáhaných spojů v automobilovém průmyslu. Technologie seam stepper kombinuje poznatky z odporového svařování a vysoce výkonné vláknové lasery. Princip této technologie spočívá v přitisknutí kleští v oblasti spoje dvou plechů a vytvoření svarové housenky pomocí rozmítání laserového svazku. Díky využití kleští podobných těm pro bodové svařování, je laser seam stepper bezpečné pro své okolí a spadá tedy do bezpečností třídy 1. To znamená, že není zapotřebí mít kolem svařovací buňky speciální ochranné prvky. [5] [6] Po přitisknutí kleští ke spojovanému místu se provede svar, který má podobu svarové housenky. Na rozdíl od bodového svařování, je takto vytvořený spoj únosnější a pevnější. Je proto možné odporové bodové svary nahradit menším počtem laserových svarů, a tím zmenšit potřebný prostor na plechovém dílu pro svary a zároveň zkrátit výrobní časy a nutnosti dalšího polohování robota. V praxi se tato technika používá u svařování karoserií automobilu VW Golf, konkrétně se jedná o přivaření C sloupku (mezi dveřmi řidiče a Imagezadními dveřmi). Díky použití technologie laser seam stepper je výrobní čas poloviční, stejně tak i počet svarů, za dodržení stejné únosnosti spoje jako u klasického bodového svařování.

Obr. 3: Speciální laserová hlava pro seam stepper podobná bodovacím kleštím [5]

Další technologií představenou firmou IPG je technologie trifokálního svařování. Podstatou této metody je rozdělení svařovacího paprsku na tři paprsky, z toho dva slouží pro předehřev a třetí pro hlavní svařování. Hlavními výhodami této technologie jsou zejména: snížení potřeby předčištění součásti a lepší průvar díky předehřevu. Technologie trifokálního svařování je dobře aplikovatelná např. pro svařování žárově zinkovaných ocelových plechů. Standartně se pro trifokální svařování např. střechy automobilu k rámu používají lasery s výkonem 4,5 kW.

Technologie trifokálního svařování - model

Obr. 4: Technologie trifokálního svařování – model [12]

Ze všech zmíněných technologií je technologie adjustable mode beam (AMB) nejnovější. Tato technika laserového svařování umožňuje kombinovat techniku svařování prstencovým a Gaussovským profilem paprsku. [7] Při klasickém keyhole svařování (z úvodu tohoto článku) laserový paprsek taví materiál, který se odráží od pevných stěn v okolí svarové lázně a může docházet k rozstřiku taveného materiálu. Tyto odlétající kapičky mohou způsobovat optické vady na svařovaném materiálu. Technologie AMB omezuje výtrysk materiálu a způsobuje lepší provaření. [7]

Porovnávání technologie svařování

Obr. 5: Porovnání technologie svařování Gaussovským profilem svazku a technologií ABM [7]

Porovnání technologie svařování Gaussovským profilem svazku a technologií ABM [7]Poslední „speciální technikou“ laserového svařování je skenerové svařování (Remote laser welding), které je ale už v běžné praxi používanou technologií. V této technologii se místo klasické svařovací hlavy používá skenovací hlava, stejná jako např. pro mikroobrábění nebo popis. [8] Paprsek je ve skenovací hlavě vychylován pomocí dvou zrcátek v osách x,y, a v kombinaci spolu s šestiosým robotem, má tato technologie k dispozici 8 stupňů volnosti. S výhodou se zde využívá pohybu svazku po polokružnicích, zvaný wobbling. [9], [10]

V porovnání s klasickými technologiemi svařování je laserové svařování produktivní, dobře se automatizuje a zajištuje úzký a hluboký průvar. Nevýhodu jsou pak vysoké pořizovací náklady a nutnost ochrany před laserovým zářením. Díky zmíněným výhodám a klesajícím cenám laserových zdrojů spolu s rostoucí účinností přibývají další nová odvětví, již tak velmi silně zastoupeného, laserového svařování.

Skenovací svařování

Obr. 6: Skenovací zařízení – Trumpf [13]

Použitá literatura:

1. MRŇA, L. Aktuální možnosti v laserovém svařování. Brno: 2018, č. 2018/1, s. 44 [cit. 2018-11-04]. Dostupné z: https:/​/​www.mmspektrum.com/​clanek/​aktualni-moznosti-v-laserovem-svarovani.html
2. MRŇA, L. Odbor technologie svařování a povrchových úprav. In: Technologie využívající laser [online]. 2014 [cit. 2018-11-10]. Dostupné z: http:/​/​ust.fme.vutbr.cz/​svarovani/​img/​opory/​hsv_specialni_metody_svarovani_svarovani_laserem_2013_mrna.pdf
3. KATAYAMA, S. Handbook of Laser Welding Technologies [online].. GB: Woodhead Publishing Ltd, 2013 [cit. 2020-04-28]. ISBN 0857092642.
4. TRUMPF. TRUMPF. TruLaser Weld 5000 [online]. 2020 [cit. 2020-04-27]. Dostupné z: https:/​/​www.trumpf.com/​cs_CZ/​produkty/​stroje-systemy/​zarizeni-pro-svarovani-laserovym-paprskem/​trulaser-weld-5000/
5. SIEWERT, A. a K. KRASTEL. Fiber laser seam stepper replacing resistance spot-welding. Burbach, Německo: Laser Technik Journal, 2014, č. 4 [cit. 2018-listopad-02]. Dostupné z: https:/​/​www.ipgphotonics.com/​en/​115/​Widget/​Fiber+Laser+Seam+Stepper+Replacing+Resistance+Spot-Welding.pdf
6. CORPORATION, I. P. IPG Laser Systems. The Laser Alternative to Resistance Spot Welding [online]. 2019 [cit. 2020-04-28]. Dostupné z: https:/​/​lasersystems.ipgphotonics.com/​products/​laser-seam-stepper/​Laser-Seam-Stepper#nav-products-specifications
7. IPG, P. C. IPG Photonics. YLS-AMB Adjustable Mode Beam Lasers [online]. 2019 [cit. 2020-04-29]. Dostupné z: https:/​/​www.ipgphotonics.com/​en/​217/​FileAttachment/​AMB+Welding+Benefits.pdf
8. SCANLAB GmbH. Remote Laser Welding [online]. [cit. 2018-listopadu-04]. Dostupné z: https:/​/​www.scanlab.de/​en/​products/​advanced-scanning-solutions/​remote-laser-welding
9. SPI Lasers. Tailored Precision Micro Welding with a CW/M Fiber Laser [online]. [cit. 2018-listopad-04]. Dostupné z: https:/​/​www.spilasers.com/​application-welding/​tailored-precision-micro-welding-with-a-cwm-fiber-laser/
10. Industrial laser solutions for manufacturing. Remote laser welding in automotive production [online]. 9. ledna. 2011 [cit. 2018-listopad-04]. Dostupné z: https:/​/​www.industrial-lasers.com/​articles/​print/​volume-26/​issue-5/​features/​remote-laser-welding-in-automotive-production.html
11. MRŇA, L. a P. HORNÍK. Pokročilé metody laserového svařování. 2017, č. 3, s. 104 [cit. 2018-listopad-04]. Dostupné z: https:/​/​www.mmspektrum.com/​clanek/​pokrocile-metody-laseroveho-svarovani.html
12. IPG Photonics. Fiber Lasers for Trifocal Brazing and Welding [online]. [cit. 2018-11-09]. Dostupné z: https:/​/​www.ipgphotonics.com/​en/​products/​lasers/​high-power-cw-fiber-lasers/​1-micron/​yls-br#[applications-94]
13. Trumpf. Skenerové svařování – vysoce produktivní obrábění bez prostojů [online]. [cit. 2018-listopad-04]. Dostupné z: https:/​/​www.trumpf.com/​cs_CZ/​pouziti/​svarovani-laserovym-paprskem/​skenerove-svarovani/

 

 

Chirurgické aplikace laserů

By |

Již krátce po tom, co v roce 1960 Theodore H. Maiman předvedl první funkční laser – jednalo se tehdy o pulsní rubínový laser – začalo se uvažovat o praktických aplikacích této technologie. Připomeňme, že laser je přístrojem, který je schopen vyzařovat světlo ve formě úzkého, koherentního a monochromatického svazku. Tím se liší od přirozených světelných zdrojů. Ostatně samotné slovo laser je akronymem z anglického Light Amplification by Stimulated Emission of Radiation – tedy „zesilování světla stimulovanou emisí záření“. Máme tedy co dělat s technologií, která může pomocí usměrněného proudu fotonů přenášet značné množství energie na úzce vymezeném prostoru.

To ji předurčuje k tomu, aby byla dobře aplikovatelné v oborech, které vyžadují efektivitu a mimořádnou přesnost. Což jsou přesně ty kýžené vlastnosti, které si vyžaduje chirurgie. Účinek správně aplikovaného laseru na tkáně je totiž takový, že energii paprsku přeměňuje na energii tepelnou. Ta se v úzkém prostoru paprsku projeví tak, že – naprosto prozaicky řečeno – řeže.

Laserový skalpel má tak oproti skalpelu klasickému několik výhod, především pracuje s velmi jemným profilem řezu a při kombinaci se správnými řídícími technologiemi je mnohem přesnější, než dokáže být ruka sebešikovnějšího chirurga svírající ocel. Při správném nastavení a za ideální konfigurace tak paprsek řeže bez zásahu do okolních tkání a jeho účinek de facto probíhá na molekulární úrovni rozpouštěním vazeb. Samozřejmostí takové operace je navíc naprostá sterilita.

V medicíně se laserové přístroje dělí podle výkonu, kdy se hovoří o laserech neinvazivních čili terapeutických (do 500mW) a o chirurgických – invazivních (nad 1W). Vedle určení výkonu navíc každá chirurgická aplikace vyžaduje velmi přesnou specifikaci použití laseru. Zjednodušeně řečeno: paprsky o kratší vlnové délce nepronikají tak hluboko do tkáně, působí ale silněji; delší vlnové délky mají zase slabší účinek, ale hlubší průnik. Podle potřebného efektu se volí i typ používaného laseru, kdy například neodymový laser je vhodný pro gastroenterologické operace, excimérový při zprůchodňování cév a např. barvivovým se rozbíjejí žlučníkové kameny. Paleta užívaných laserů je ale ještě mnohem širší.

Zajímavé je, že podle nastavení laseru může lékař dosáhnout různých efektů při zasažení tkáně, z nichž každý je vhodný pro jiný typ zásahu. Hovoří se tak o těchto účincích laserového paprsku: Fotokoagulace, tedy v podstatě zničení tkáně sražením. Toto má široké využití při korekci počínající ztráty zraku, nejčastěji u tzv. diabetické retinopatie. Dalším možným zásahem je vaporizace, odpaření, tkáně. Podobným efektem je tzv. ablativní fotodekompozice, kdy se v z tkáně v podstatě vysokou teplotou odpařují části molekul. Při využití laseru k prudkému zvýšení teploty v tkání (až na 1250 °C) dochází ke zvýšení tlaku a roztržení struktury tkáně – laser pak opravdu doslova řeže. Lasery lze ale dosáhnout i sofistikovanějších efektů vyvolaných reakcí na extrémní podmínky laserového paprsku. Příkladem je tzv. fototermální efekt, kdy lze laserem zastavit krvácení některých tkání. Jiným příkladem je tzv. fotochemická reakce, kdy energie laseru v podstatě aktivuje proces změny chemické struktury tkáně.

S takovou škálou možností jistě nepřekvapí, že laserové technologie suverénně zasáhly do celé řady lékařských odvětví, kde je potřeba chirurgických zásahů. Vůbec poprvé se laseru užilo při oftalmologických operacích, v praxi prvně již v roce 1987. Citlivé prostředí oka je jako dělané pro užití přesných a pevně cílených zásahů laserového paprsku. Variant operací existuje dnes obrovské množství a lze s nimi jak napravovat zrakové vady, tak odstraňovat degenerativní nemoci jako různé zákaly, retinopatie a podobně.

S trochou nadsázky lze říci, že co je v laserových technologiích supermoderní, to se brzy aplikuje v oftalmologii. Dnes se například prosazují zásahy pomocí tzv. femtosekundového laseru. To je zařízení, které je schopné v řádech femtosekund (1 sekunda = 1015 fs) produkovat laserové pulsy, které vytváří v oční tkáni rastrové tvary sloužící ke korekci vad a odstraňování šedého zákalu. Sám femtosekundový laser je přitom strojem, který by se před 20-30 lety vyjímal spíše ve sci-fi románu.

Chirurgické využití mají lasery i v ortopedii, kdy pomáhají léčení kostí, také ale odstraňují různé nádory, puchýře a cysty, které mohou během léčby vznikat. Stále větší roli pak mají lasery při operacích trávící soustavy, protože tkáně střev i žaludku dobře reagují na výše řečenou koagulaci. Je tak možné odstraňovat nejen žaludeční vředy, ale i nádory a cévní deformace.

Samostatným tématem by bylo využití laserů ve stomatologii. Silné lasery začínají nahrazovat zubní vrtačky, kdy je možné soustředěným paprskem přímo „vrtat“ tvrdý materiál zubů, a to při mnohem nižší bolestivosti. I slabší, krátkovlnné lasery ale pomáhají, neboť stimulují tkáně při léčbách paradontóz, zánětů, demineralizace zubů a podobně. Dokonce existuje technologie, která pomocí laserových aplikací zvyšuje odolnost skloviny.

Dodejme ještě, že velkým lékařským oborem, v tomto případě nechirurgickým, který lasery také opanovaly, je dermatologie. Zde se využívají spíše lasery s nízkými výkony, které stimulují tkáně a pomáhají tak odstraňovat jizvy, hojit rány, léčit opary a proleženiny, odstraňovat nežádoucí ochlupení a akné a podobně. Na jednu stranu se může takové ozařování zdát oproti femtosekundovým pulsům při operacích oka tak trochu banální, na druhou stranu ale pomáhá odstraňovat deformace a vrozené vady, které byly dříve neřešitelné. A to všechno při zachování vysokého komfortu pacienta. Další nechirurgické aplikace jsou například v gynekologii, kde se stimulací tkání pomáhá léčení ran a jizev. V revmatologii se zase využívá protizánětlivý účinek laserové terapie při léčbě artróz.

Ze všech oborů lidské činnosti je tak medicína jedním z těch, kde dnes laserová technologie pomáhá nejvýrazněji. To dává člověku důvod k jistému technooptismu. Existují samozřejmě i vojenské aplikace laserů (o těch někdy příště), ale obecně je myslím povznášející, že co se v popkultuře stalo nezbytnou rekvizitou sci-fi válek, to je v reálu silným nástrojem záchrany zdraví a života.

 

Jak lasery našly uplatnění v archeologii?

By |

Rozvoj laserových technologií přinesl celou řadu praktických aplikací. Některé potkáváme v běžném životě takřka denně a už si je ani neuvědomujeme. Jiné se staly důležitým nástrojem různých oborů, ať už vědních, technických, či praktických. Jednou z takovýchto metod využívajících fyzikální vlastnosti laserů je tzv. LIDAR neboli Light Detection and Ranging, případně jednoduše Light Radar.

Tato technologie se objevila v roce 1961, tedy již velmi krátce po zkonstruování prvních laserů. Tehdy tým pod vedením Malcolma Stitche z Hughes Aircraft Company sestavil zařízení zvané Colidar (Coherent Light Detecting and Ranging). To bylo testováno na možnosti vyhledávání vojenských cílů z letícího letadla. Samotné slovo LIDAR (ne vždy dodržovaný úzus říká, že LIDAR – na rozdíl od radaru – píšeme velkými písmeny) se pak objevilo už v roce 1963.

Paprsek LIDARu vysílaného z observatoře Mauna Loa při mapování aerosolu ve svrchních vrstvách stratosféry. Laser se dobře vybarvil díky mlze. (Zdroj: NOAA Photo Library, Forrest M. Mims III)

Vidíme tedy, co do využití, jistou podobnost s radary. Obě technologie v podstatě měří dobu mezi dopadem vyslaného záření a zachycením jeho odrazu. S tím zásadním rozdílem, že radary využívají elektromagnetické záření, zatímco LIDAR pracuje se soustavou laserových paprsků. LIDAR je tedy metodou měřící – umožňuje měřit vzdálenosti dle doby šíření laserového paprsku odrážejícího se od povrchu snímaného objektu. LIDARové snímání tak vytváří soustavu bodů, které lze následně promítnout do prostorového zobrazení. I pro ty, kteří se s LIDARem ještě nesetkali tak není těžké si představit široké využití v oborech jako je geografie, kartografie, archeologie či řízení autonomních strojů.

LIDAR využívá jak světlo ve viditelném spektru, tak například spektra infračervená či ultrafialová. Obrovskou výhodou je přesný, v podstatě bodový, fokus laserového paprsku. Z letadel je tak například možné rozpoznávat při lidarovém mapování detaily terénu už od velikosti 30 cm. Pro praktické účely se obvykle používají lasery o vlnových délkách 600-1000 nm, případně 1550 nm u specifických aplikací. Nevýhodou LIDARu je oproti radaru relativně krátký dosah, výhodou ale již řečená obrovská přesnost detailů. Můžeme se setkat jak s LIDARovými zařízeními na stacionárních objektech, tak s kombinací LIDARu a např. letadla či dronu.

Jak bylo řečeno, v počátcích LIDARu šlo hlavně o snahu mapovat pohyb nepřátelských objektů, později začaly být objevovány kartografické a další možnosti. LIDARové mapování terénu zažívá v poslední době jistý boom umocněný moderními technologiemi, lepším využitím letadel či použitím dronů. Terénní mapy vzniklé s pomocí LIDARu tak překvapují laika mírou detailu a odhalováním jinak neviděných topografických prvků.

Ukázka digitálního modelu povrchu DSM (A) a digitálního modelu terénu DTM (B) laténského hradiště Vladař u Záhorčic (okr. Karlovy Vary) na základě zpracování dat ze systému LiDAR. Podle GOJDA, M. – J. JOHN – L. STARKOVÁ: Archeologický průzkum krajiny pomocí leteckého laserového skenování. Dosavadní průběh a výsledky prvního českého projektu. In: Archeologické rozhledy 63(4), s. 683.

LIDAR tak přinesl dříve nepředstavitelné možnosti terénní prospekce, které široce využívá například archeologie. Nejenom, že je možné si promítnout známé lokality, navíc lze odhalovat nové. Obrovskou výhodou je možnost pomocí správného nastavení a algoritmů mapovat i skrze vegetaci. Díky tomu u nás LIDARové mapování například pomáhá odhalovat zaniklé středověké vesnice či hledat relikty dávno zaniklých cest v zalesněných územích. Ve světě před pár měsíci badatelům vyrazil dech objev mnoha nových mayských měst v Guatemale. LIDAR tak pomohl odhalit skutečnosti a souvislosti, které by jinak bez této technologie byly možná archeologům navždy zatajené. LIDAR lze navíc použít i k mapování objektů a staveb a vytváření jejich 3D modelů.

Objekty mayské civilizace nalezené ukryté v džungli (zdroj: PACUNAM/CANUTO)

Kromě mapování terénu lze ale stejnou metodu využít například v ekologii a ochraně přírody – velká míra detailu LIDARové projekce totiž umožňuje například sledovat stav lesního porostu, výšku stromů či podobu systému korun. To jsou věci, které bychom z běžného leteckého snímkování prostě nepoznali.

Příklad generovaného zobrazení na základě LIDAR mapování, které srovnává mladý a starý lesní porost a umožňuje studovat jeho plošný stav (zdroj: Sarah Frey, Oregon State University)

Proč se ale při aplikacích omezovat jen na vytváření projekcí terénu? Laserového mapování se tak úspěšně užívá například v meteorologii, kdy jako odrazné plochy slouží vrstvy atmosféry. V takovém případě se ale dostáváme na úplně jiné výkony laserů, neboť je potřeba doslova „pořádně střelit do vzduchu“, aby se získala relevantní data.

Komerčně je pak poslední dobou mimořádně důležité použití LIDAR technologie v autonomních vozech. Mapování totiž probíhá nejen s velkými detaily, ale také velmi rychle. Hledá se tak cesta, jak využívat a zdokonalovat LIDARy pro tuto aplikaci. Existuje ale i kritika, která říká, že pro samořízená vozidla není z různých důvodů LIDAR vhodný.

Samořídící auta společnosti Google s LIDAR zařízeními na střeše (zdroj: Getty Images, Kim Kulish)

Buď jak buď, LIDARové technologie se neustále rozvíjejí. S jistým zjednodušením lze konstatovat, že co do míry praktické aplikovatelnosti jde o jedno z nejpestřeji využívaných laserových zařízení.

Lasery a efektivní fúze

By |

Ze školy si možná všichni pamatujeme, že jednou ze zásadních jaderných reakcí je tzv. nukleární fúze. Při ní dochází ke slučování jader atomů a zároveň se při přeměně lehčích prvků v těžší uvolňuje značné množství energie. Takováto reakce probíhá například v hvězdách a má mnohem větší efektivitu, než jaderné štěpení, které dnes používáme v průmyslových reaktorech. Také už asi ze školy víme, že dokonalé ovládnutí fúze je svatým grálem energetiky a že jsme od ní asi 30 let daleko – a je úplně jedno, kdy v posledních desetiletích jste do školy chodili. O fúzi se pořád mluví jako o něčem, co chápeme, ale ještě ne dostatečně ovládáme a oněch ikonických „30 let“ opakujeme už minimálně půl století. 

O úskalích termonukleární fúze, a proč se pořád nedaří posílat do drátů elektřinu vyrobenou pomocí malých, průmyslových sluncí, by se dalo mluvit dlouho. Nás ale zajímá, jakou roli ve snaze dosáhnout úspěchu při spuštění efektivní fúze hrají lasery. Jednoduchá odpověď zní: pravděpodobně zásadní.

Možností jak v řízeném prostředí dosáhnout fúze je totiž několik. V pozemských podmínkách se nejlepším palivem fúzních reaktorů ukazuje být reakce deuteria a tritia, tedy tzv. těžký a supertěžký izotop vodíků. Aby ale došlo k „zapálení“, je potřeba je přivést k teplotám 100–200 milionů kelvinů. V takovém stavu je hmota ve skupenství plazmy, konkrétně vysoce energetického plazmatu s nesmírnou hustotou. V podstatě tak stojíte před úkolem tuto plazmu nějak udržet dostatečně dlouho na to, aby se spustila řízená fúze a vy mohli bezpečně energii využívat. Samozřejmě s tím, aby byla celá soustava stabilní – neřízenou fúzi už totiž zvládáme docela dobře, jen jí říkáme termonukleární zbraň a to opravdu není dobrá hračka.

Laserové technologie nacházejí uplatnění v metodě tzv. inerciální udržení. Jeho princip spočívá v tom, že se palivo prudce zahřeje a zápalné teploty fúze dosáhne v těch několika zlomcích vteřiny předtím, než by nestabilní, magneticky nedržená plazma expandovala do okolí. Název inerciální udržení odkazuje na to, že setrvačnost (inerce) na potřebné nanosekundy udrží palivo pohromadě.

Pro dosažení inerciální fúze je proto potřeba palivo v pevném skupenství nesmírně stlačit tak, aby se prudce navýšila jeho hustota. Ve škole jsme se možná učili, že kapaliny a pevné látky jsou nestlačitelné, nicméně při extrémních tlacích to možné je. Aby se ovšem dosáhlo takového mimořádného tlaku, je potřeba mimořádných postupů. Vysokoenergetickým laserovým paprskem působícím na povrch paliva dojde k prudkému zvýšení teploty a změně skupenství. Excitované atomy uvolněných plynů se odrážejí od stále ještě pevného povrchu a působí značným tlakem směrem dovnitř. 

Aby se zabránilo vystřelení hmoty, je potřeba palivo bombardovat laserovými paprsky z více stran tak, aby byly tlaky v rovnováze směrem dovnitř. Je potřeba říci, že se bavíme o skutečně extrémních podmínkách. Teploty musí přesáhnout 100–200 milionů °C, ve stavu plazmatu se palivo udržuje několik desetin miliardtin sekundy (hrozné to jen napsat, natož si to představit). Vnitřní tlaky v palivu jsou stomilionkrát vyšší, než tlak atmosférický. 

Nebýt laserových technologií, nebylo by možné tak extrémních podmínek dosáhnout. Jiné fúzní reaktory, jako například známé tokamaky (které se také stále nepodařilo dotáhnout k průmyslovému využití), využívají princip tzv. magnetického držení. Při něm se plazma stabilizuje ve vakuu, postupně se zahřívá a koncentruje. Inerciální držení působí o poznání dramatičtěji, paradoxně je ale díky naší schopnosti stavět supervýkonné lasery dosažitelnější. Fúzní elektrárna založená na inerciálním držení by vlastně byla jednou velkou laserovou soustavou. 

Abychom totiž místo reaktoru nevyrobili bombu, musí být palivový terčík bombardovaný laserem velmi malý. V dnešních zařízeních se laserem bombardují „peletky“ vytvořené z plastové kuličky o velikosti kuličky pepře. Ta je naplněná hluboce podchlazenou směsí deuteria a tritia, které se před „zapálením“ nachází v pevném skupenství. Výsledkem je relativně malá exploze (která ovšem uvolňuje energii v řádech sta milionů joulů), v průmyslovém využití by proto takových miniaturních explozí probíhala celá série za sebou.

Ani inerciální udržení ale není dokonale zvládnuté – jak už to tak bývá, co se zdá být funkční v teorii, pokulhává v praxi. Rozvoj technologie trvá už od 70. let, v novém století byly největší naděje dávány do zařízení National Ignition Facility (NIF) v USA. Jde o doposud největší zařízení tohoto typu, které je schopné palivo bombardovat celkem 192 laserovými paprsky, jež dokázaly palivový terčík ohřát energií 2 MJ. Jde mimochodem o tak high-tech stavbu, že si dokonce v jednom Star Trek filmu zahrála v roli strojovny lodi Enterprise. I v tomto provozu se ale původní očekávání nenaplnila a tříletá kampaň spuštěná v roce 2009 nedosáhla stanoveného cíle, totiž dostatečně energeticky efektivního zapálení fúze. Zařízení NIF sice různými technickými úpravami až čtyřicetinásobně zlepšilo výtěžky z dosažené fúze, přesto to nestačilo. Původní ambice NIF jsou tak dnes v útlumu a zařízení se věnuje jiným vědeckým úkolům spojeným s materiálovou vědou a vojenským výzkumem.

To ovšem neznamená, že by potenciál technologie byl mrtvý – právě naopak. Existuje několik dalších výzkumných center hledajících vhodnou cestu (konkrétně se řeší přesný způsob zapálení palivové kuličky, fokusování energie laserů a podobně), navíc ani NIF možná ještě neřekl poslední slovo. Pointa je v tom, že laserové stlačování paliva funguje. Pereme se ne se samotným fyzikálním principem, ale především s energetickou náročností laserů a konkrétními konstrukčními řešení. Ano, je pravda, že pozornost některých výzkumných center se od laserů posouvá směrem k urychlovačům schopným generovat iontové pulsy s podobným efektem. Jak ale ví každý fanoušek sci-fi, lasery jsou cool a ještě není důvod přestat jim držet palce. Ostatně nezapomínejme: průmyslová jaderná fúze je už jen 30 let daleko.

Popisky obrázků:

Obr. 1: Schéma spuštění jaderné fúze při inerciálním udržení. 1) Laserové paprsky dopadají na povrch paliva, při prudkém zahřátí vzniká plasmový obal. 2) Materiál je vystřelen směrem od okraje, namísto jeho raketového odpálení pryč na něj ale působí protisměrné lasery. 3) Soustava se na zlomky nanosekund dostává do rovnováhy, kdy se všechen tlak soustředí ve středu palivové kuličky. 4) Jádro dosahuje teploty 100 milionů °C a obrovské hustoty. Spouští se jaderná fúze. 

Obr. 2: Palivová kulička užívaná NIF, obsahující směs deuteria a tritia v pevném skupenství uvnitř plastové kuličky. (Zdroj: National Ignition Facility)

Obr. 3: Schéma zařízení NIF. Paprsky z laserových zařízení (modře) se koncentrují do jednoho bodu uvnitř palivové komory (červeně), kde je umístěna palivová kulička. (Zdroj: National Ignition Facility)

Světelné vlny

By |

Přdednášející: prof. Petr Malý, Katedra chemické fyziky a optiky MFF UK

Vlny světla mají výjimečné postavení, protože umožňují zrakové vnímání. Optika patří k nejstarším vědám, ale stále se rozvíjí a hraje významnou roli v základním výzkumu i v současné společnosti (spektroskopie, lasery, optická komunikace po internetu, DVD, LED, holografie, optické paměti atd.).

Nahrávka vznikla jako součást cyklu přenášek z moderní fyziky pro středoškoláky, které pořádá Ústav teoretické fyziky Matematicko-fyzikální fakulty Univerzity Karlovy v Praze a OVVP MFF UK.