Sloužíme jako informační portál pro všechny, kteří se zajímají o lasery a světlo jako takové.
Dětem, studentům a široké veřejnosti zodpovíme veškeré otázky.

Úvod do spektroskopie

By |

Tento článek si neklade za cíl se dopodrobna zabývat postupy spektroskopie. Současný stav poznání je natolik obsáhlý, že ani několik knih by nepojalo veškeré znalosti tohoto oboru. Článek by měl sloužit spíše jako úvod do této tématiky. Na jeho základě se můžete rozhodnout, zda budete mít odvahu a trpělivost se s danými tématy blíže seznámit.

Nejstarší spektroskopický nástroj

Na úvod je nutno říci, že i když to není na první pohled patrné, je spektroskopie nedílnou součástí našeho života již od narození. Nejstarším a zdaleka nejpoužívanějším spektroskopem je oko. Dle barev a na základě našich předchozích zkušeností rozpoznáme nebezpečí v našem okolí, či určíme zralost ovoce.

Lidské oko obsahuje tři typy receptorů na barvu, tzv. čípků, které pokrývají oblast, kterou nazýváme viditelné spektrum (viz. Obrázek 1). Za zmínku stojí, že dravci nebo hmyz mívají i více typů takových receptorů a jsou schopni vidět i v UV oblasti světelného spektra. Většina lidí si neuvědomuje naši závislost na tomto způsobu vnímání světa okolo nás. Lidé s disfunkcí očních čípků mají pro ty zdravé „nepředstavitelný“ hendikep (Obrázek 2)

Obr. 1 : Křivka citlivosti lidských očních čípků(http://hyperphysics.phy-astr.gsu.edu/ hbase/vision/colcon.html)


Obr. 2: Ishiharův test barvosleposti (https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/color-vision-deficiency?sso=y)

 

Počátky spektroskopie jako vědy

Za nejstarší využití spektroskopie (mimo lidské oko) by se nejspíše dalo považovat určení teploty na základě barvy. Tato metoda je používána již od dob, kdy lidé začali tepelně zpracovávat kovy. Mistři kováři takto dokázali určit správnou teplotu pro kalení oceli tak, aby získali co nejlepší ostří [1]. Je to dodnes nejlepší způsob, jak změřit teplotu velmi horkých těles, a to i na nezměrné vzdálenosti. Dnes se tento jev nazývá záření černého tělesa a matematicky byl „popsán“ (vztah mezi teplotou a vyzařovanou vlnovou délkou) teprve roku 1893 Wilhelmem Wienem [2].

Obr. 3: Výroba japonského meče (https://www.bbc.com/future/article/20181113-a-samurai-swordsmith-is-designing-a-space-probe)


Obr. 4: Spektrum záření černého tělesa [2]

 

Počátek spektroskopie jako vědy můžeme datovat do roku 1665. Isaac Newton tehdy provedl experiment s hranolem. Jako jiní před ním jej použil k rozložení bílého světla na „duhu“. Do této chvíle ale chybělo hlubší porozumění podstaty pozorovaného jevu. Newton provedl sérii (z dnešního pohledu banálních) pokusů, z nichž vyvodil přelomový závěr: že bílé světlo se skládá z barev, které hranol může nejen rozdělit, ale i sloučit.

Později (roku 1800) se William Herschel pokusil změřit teplotu barev. Osvětlil lomeným světlem z hranolu sérii teploměrů a objevil tak, že mimo duhu světlo obsahuje ještě další prvek, který zahřívá teploměr i mimo ni. Ten vzhledem k poloze nazval infračerveným světlem.

Na základě Herschelovy práce uskutečnil Johann Ritter další významný objev (v roce 1801). Sledoval, jak reaguje chlorid stříbrný na barvy spektra. Zjistil, že reakce u fialového světla je větší, než u červeného a objevil, že největší je reakce na záření řazené až za fialovou, pro lidské oko neviditelné. Tehdy ho pojmenoval chemické záření, ale časem se ujal výraz ultrafialové záření [3] [4].

Obr. 5: (https://www.alamy.com/stock-photo/newton-experiment.html)


Obr. 6: Měření teploty světla (https://www.youtube.com/watch?v=aHQVB6qgZAU)

 

Elektromagnetické spektrum

V současnosti víme, že viditelné spektrum je jen celkem zanedbatelnou částí elektromagnetického spektra. Každá oblast elektromagnetického spektra je spojena s určitými jevy a procesy, které ve své podstatě odpovídají vlnové délce daného elektromagnetického záření.

Například radiové vlny jsou produkovány pohybem elektronů ve vodiči. V dnešním přetechnizovaném světě je proto na každém elektrickém přístroji varovná cedulka o možných rizicích. Na druhou stranu, tyto vlny mohou indukovat proudy, které mohou činnost zařízení ovlivnit, nebo poškodit.

Dnešní mikroelektronika (tedy počítače, mobilní telefony a obecně všechna zařízení s mikroprocesory) je ve své podstatě zdrojem mikrovln (GHz). Mikrovlnné záření je spjaté s pohybem molekul. Infračervené záření již souvisí s pohybem atomů v molekulách. Viditelné, UV a Rentgenové zas spíše s pohybem elektronů v atomech. Gama a kosmické záření je pak spojeno s procesy v atomovém jádru.

 

Obr. 7: Elektromagnetické spektrum (https://en.wikipedia.org/wiki/File:EM_Spectrum_Properties_edit.svg#filelinks)

 

Spektroskopie je v současnosti pro vědu takový „švýcarský nožík“. Uplatní se od astronomie, přes fyziku a chemii.

Spektroskopie v astronomii

V astronomii spektroskopie umožnila převratné objevy. Dopomohla nám například zjistit z čeho se skládají hvězdy, jak probíhá jejich životní cyklus a jak vytváří všechnu svou energii, aniž bychom na nějakou museli letět. Dokonce díky ní můžeme pozorovat i složení atmosféry planet čistě jen sledováním emisních, respektive absorpčních, spektrálních čar.

Obr. 8: Emisní a absorpční spektrum „hvězd“ (https://geol105.sitehost.iu.edu/images/gaia_chapter_1/visible_light_spectral_emission_.htm)


Obr. 9: Emisní spektra hlavních prvků ve hvězdách (https://hubblesite.org/contents/articles/spectroscopy-reading-the-rainbow)


Obr. 10: Spektrum slunečního záření, zvýrazněny čáry vodíku, sodíku, železa, vápníku (https://astronomy.com/magazine/ask-astro/2020/02/what-elements-does-the-sun-contain)

 

V neposlední řadě bylo díky spektroskopii potvrzeno i rozpínání vesmíru pomocí Dopplerova jevu.

Obr. 11: (https://sketchplanations.com/the-doppler-effect)

 

Spektroskopie ve fyzice

Příkladem využití ve fyzice je například zjišťování složení materiálu, nebo ověřování pravdivosti výpočtů v kvantové teorii.

Obr. 12: Emisní spektra prvků periodické tabulky ve viditelné oblasti (https://fiftystatebanana.com/spectral_lift_and_dialate-1/)

 

Kvantová teorie je relativně mladá a na pochopení neintuitivní záležitost. Dnes má asi každý představu o tom, že existují atomy, které jsou základními kameny, ze kterých je složeno vše okolo nás. Většina z nás nejspíš tuší, jak asi takový atom vypadá. Ještě relativně nedávno tomu tak ale nebylo.

Současný nejrozšířenější názor na vzhled atomu je založen na Rutherfordově (1911) nebo Bohrově (1913) modelu. Jsou sice jednoduché na pochopení, ale fyzikálně „nesedí“. Pro zpřesnění bylo nutno zapojit kvantovou teorii a vytvořit „novou“ matematiku, a tak vznikl Schrödingerův model. Takto spočtené energie přechodů (≈ spektrální čáry) jsou v souladu s měřením, a to s neuvěřitelnou přesností nedosažitelnou v klasické fyzice.

Obr. 13: Bohrův model atomu (https://en.wikipedia.org/wiki/Bohr_model)


Obr. 14: Rutherfordův model atomu (https://chemistrygod.com/rutherford-atomic-model)


Obr. 15: Názorné schema přechodů v atomu vodíku a jejich energie (http://www.thestargarden.co.uk/Bohrs-atom.html)


16: Elektronové orbitaly dle Schrödingerova modelu atomu (https://physics.stackexchange.com/ questions/546323/electrons-in-the-quantum-mechanical-model-of-the-atom)


17: Schrödingerův model atomu (https://www.sutori.com/en/item/erwin-schrodinger-s-quantum-mechanical-model-of-the-atom-consisted-of-having-ele)

 

Spektroskopie v chemii a biologii

Infračervená spektroskopie je užitečná zejména v chemii a biologii. Je zaměřena především na takzvané rotačně-vibrační stavy molekul. To je v podstatě, jak název napovídá, sledování pohybu atomů v molekulách.

Molekuly můžeme chápat jako soustavu kmitajících atomů s několika možnými stupni volnosti. Už jen taková jednoduchá molekula oxidu uhličitého, CO2, má mnoho takových stavů (viz. Obrázek 18). Z naměřených spekter se dá spočítat mnoho informací o vlastnostech a síle vazeb mezi atomy dané molekuly.

Obr. 18: Rotačně-vibrační stavy CO2 (https://slidetodoc.com/infrared-ir-spectroscopy-or-vibrational-spectroscopy-applied-chemistry/)


Obr. 19: Spektrum rotačně-vibračních stavů CO2 za 0.1 atmosféry při 23°C (https://wiki.anton-paar.com/cz-cs/infracervene-spektrum-oxidu-uhliciteho/)

 

Lasery ve světě spektroskopie

S nástupem laserů se rozvinula metoda Ramanovské spektroskopie. Je založena na principu rozptylu světla, kdy vcelku zanedbatelné množství fotonů v důsledku interakce s atomy ve zkoumané látce změní svou vlnovou délku.

Lasery jsou zde nepostradatelné, jelikož je zapotřebí velmi úzká spektrální čára a při tom vysoká intenzita světla. Je užitečná zejména v chemii k určení složení látek, protože každá z nich má svůj jedinečný Ramanovský „otisk“.

Obr. 20: Vizualizace a spektrum pro Ramanův rozptyl (https://sisu.ut.ee/heritage-analysis/book/export/html/19022)

 

Závěrem je třeba dodat, že toto není kompletní výčet spektroskopických technik, ani veškerých možností, které nám otevírá. Mnoho zajímavých využití, která jsou již na hranici s jinými technikami, jako například magnetická rezonance, bylo opominuto. Proto čtenáři vřele doporučuji, pokud ho výše uvedené alespoň trochu zaujalo, aby se nebál toto téma sám aktivně prozkoumat.

Reference

[1] „https://www.youtube.com/watch?v=VE_4zHNcieM“.
[2] https://en.wikipedia.org/wiki/Wien%27s_displacement_law.
[3] „https://www.juliantrubin.com/bigten/lightexperiments.html“.
[4] „https://micro.magnet.fsu.edu/optics/timeline/people/ritter.html“.

Lasery v dermatologii

By |

Vývoj moderní diagnostiky i terapie je v našem století výrazně ovlivněn rozvojem techniky. Stále nové objevy z fyziky, elektroniky a dalších oborů vedou k hledání jejich využití v medicíně. Výjimkou není ani laser.

Šedesát let od jeho objevení si jen stěží dokážeme představit, že ještě před několika lety byl laser pouze empirickou technikou, akademickou studií nebo futuristickým projektem. V průběhu let a s vývojem technologie se navzdory počátečním dojmům laser stal základním, nenahraditelným a všudypřítomným zařízením moderní vědy. Patří tak k nejvýznamnějším technickým objevům druhé poloviny 20. století.

Řada technických pozorování a cílených výzkumů prokázala příznivý efekt laserového záření na živou tkáň. Potvrdila se tak možnost jeho léčebného využití. Laseroterapie se v posledních letech těší stále větší oblibě. Lasery si našly své místo téměř ve všech oblastech medicíny (jak v léčbě, tak ve výzkumu) a jejich aplikace se neustále dynamicky rozvíjejí.

Unikátní vlastnosti laserů jsou využívány i v dermatologii. Revoluci pro neinvazivní laseroterapii znamenaly diodové lasery. Dnes výrobci nabízí širokou škálu diodových laserů o různých výkonech a v širokém spektru vlnových délek. A co je nejdůležitější – jejich cena je přijatelná pro většinu zdravotnických zařízení.

V současnosti je velké množství pozornosti věnováno volbě zdroje světla pro laseroterapii. Dříve se používal He-Ne laser (který emituje světlo o vlnové délce 632,8 nm), ale dnes se dává přednost laserům na bázi polovodičů. Vlnové délky využívané v laseroterapii jsou v oblasti červeného spektra a NIR oblasti (blízkého infračerveného světla), tj. vlnových délek 600 až 1070 nm. Tento rozsah umožňuje nejlepší penetraci do tkání, neboť hlavní tkáňové chromofory (hemoglobin a melanin) vykazují nejvyšší absorpci na vlnových délkách kratších než 600 nm. Světlo o vlnových délkách v rozsahu 600–700 nm je využíváno k ovlivňování povrchově uložených tkání, zatímco delší vlnové délky ve spektru 780–950 nm pronikají hlouběji a hodí se tak k terapii hlouběji lokalizovaných struktur.

Historie

V roce 1963 Leon Goldman, známý také jako „otec laseru v medicíně“, jako první použil laser v dermatologii. Tím předznamenal éru nepředstavitelného technologického rozvoje a inovativního terapeutického potenciálu. Ve svých prvních studiích popsal účinky Maimanova laseru při selektivní destrukci kožních pigmentových struktur, jako jsou černé chloupky. Vysvětlil také potenciální využití rubínového laseru a inovativnějšího Q-switched zařízení při odstraňování tetování a možné léčbě dalších pigmentových lézí, jako jsou névy a melanomy.

V roce 1967 Dougherty experimentoval s použitím laseru při aktivaci fotosenzitivních látek, které byly schopny selektivně vázat a ničit rakovinné buňky. Jeho práce představovala původ fotodynamické terapie. K velkému pokroku laserové terapie však došlo až v roce 1980, kdy Rox Anderson a John Parrish zavedli tzv. teorii selektivní fototermolýzy. Při ní použitím specifické vlnové délky dosahujeme zničení konkrétních molekul (nebo chromoforů), což umožňuje lepší lokalizaci tepelné energie a minimalizaci poškození okolní tkáně.

Jen o tři roky později Oshiro Atsumi popsal použití neinvazivních laserů a jejich mechanismy působení. Ve stejné době Passerella studoval účinky laseru na mitochondrie. Konečně pak v devadesátých letech došlo k nárůstu studií v oblasti využití laseru v dermatologii, ať už se jednalo o oblast laserové epilace nebo laserového omlazení.

Laser má v dermatologii tři hlavní cíle a využití:

  • podporu hojení ran, reparaci tkání a prevenci vzniku nekrózy
  • zmírnění zánětu a edému při poranění nebo chronických onemocněních
  • při analgezii

Chceme-li dosáhnout laserovým zářením na biologické tkáni žádaného efektu, musíme se řídit pravidlem tzv. selektivní fototermolýzy. Na ošetřovaný cíl (tzv. chromofor) působíme elektromagnetickým zářením s takovými vlastnostmi a vlnovou délkou, které mají minimální vedlejší efekty na okolní tkáň.

Dělení laserů

Lasery lze rozdělovat podle různých kritérií. Nejčastěji rozlišujeme typy laserů podle aktivního prostředí, časového režimu provozu laseru, výkonu, nebo dle typu ošetřované léze.

  • Podle časového režimu dělíme lasery na kontinuální, pulzní a kvazi kontinuální.
  • Na základě aktivního prostředí rozlišujeme mnoho různých druhů laserů: pevnolátkové, polovodičové, plynové, kapalinové, plazmové a lasery s volnými elektrony.
  • Dle výkonu lze lasery dělit na nízkovýkonné (neinvazivní) a vysokovýkonné (invazivní).

Využití nízkovýkonných (neinvazivních) biostimulačních laserů

Vývoj těchto laserů byl na rozdíl od rozmachu chirurgických laserů pomalejší. Mezi biostimulační lasery řadíme přístroje s výkonem do 500 mW. V současné době jsou na trhu běžně k dispozici přístroje s maximálním výkonem polovodičové diody do 300 mW u infračerveného světla. U červeného a u He-Ne trubice jsou výkony nižší. Pří vyšším výkonu laserového záření mizí stimulační odpověď buněk. Jak jsem zmiňovala dříve, vlnová délka výrazně ovlivňuje míru absorpce laserového záření a interakci s jednotlivými vrstvami tkáně, kterými paprsek prochází.

Biostimulační lasery dělíme podle druhu zdroje na polovodičové a plynné (He-Ne). Polovodičový laser využívá jako zdroj záření diodu. Biostimulační lasery slouží k ovlivňování reparačního procesu u špatně se hojících ran různé etiologie. Studie prokázaly, že záření ovlivňuje syntézu kolagenu či novotvorbu cév a podporuje epitelizaci.

Nejčastěji jsou v dermatologii biostimulační lasery využívány k terapii špatně se hojících ran, bércových vředů, jizev, proleženin, bolestí po prodělaném pásovém oparu, modřin, i akné. Používají se jako podpůrná metoda při léčbě zánětu, v rehabilitaci, a v korektivní dermatologii (obecně). Další aplikace zahrnují léčbu oparů i celulitidy, odstranění nežádoucích pigmentací a jizev, nebo využití k podpoře vlasového růstu. Lasery vykazují analgetický efekt, urychlují hojení po chirurgických zákrocích, apod. Při správném používání biostimulačního laseru nebyly pozorovány žádné komplikace. Při biostimulaci však musíme chránit zrak speciálními brýlemi, aby nedošlo k ozáření sítnice.

Vzužití vysokovýkonných (invazivních) laserů

V dermatologii byly vysokovýkonné lasery prvně vyzkoušeny v šedesátých letech. Při invazivní laseroterapii se využívá unikátních vlastností laserového paprsku a principu selektivní fototermolýzy. Při dopadu elektromagnetického záření na tkáň dochází k ireverzibilní změně na jinou formu energie, nejčastěji energii tepelnou. Za chromofor je považována taková tkáňová struktura, kterou je laserové záření nejvíce absorbováno. Která tkáňová struktura bude laserové záření nejvíce absorbovat závisí na vlnové délce daného záření. Pro lepší orientaci se invazivní lasery dělí podle možností použití.

Lasery určené pro terapii cévních lézí

Cévní léze jsou ošetřovány lasery, jejichž absorpční maximum je v hemoglobinu. Nejčastěji těmito lasery odpařujeme degenerativní kožní změny, xanthelasmata, syringoma, adenoma sebaceum, rhinophyma, verrucae vulgares, molusca contagiosa, fibroma, milia.

Lasery používané k odstraňování nežádoucího ochlupení

Pomocí laserové depilace dosahujeme permanentní redukce nežádoucího ochlupení. I zde se využívá principu selektivní fototermolýzy. Cílovou tkání těchto laserů je melanin ve vlasovém folikulu, ve vlasovém stvolu, ale i v oblasti infundibula. Lasery používané k depilaci jsou diodově čerpané (800 nm), alexandrite (755 nm), ruby laser (694 nm), IPL aj.

Lasery a přístroje k léčbě akné

K léčbě akné se v poslední době využívá tzv. modré světlo – úzkopásmové polychromatické – světlo (407–420 nm).

Další možností je léčba akné za pomoci pulzního diodového laseru (1450 nm). Laserové záření je absorbováno buněčnou vodou v epidermis a dermis. Epidermis je chráněna dynamickým chlazením, takže nedochází k jejímu poškození. Dermis je tepelně prohřáta spolu s mazovými žlázami. Následuje termální nekróza mazových žláz a nekróza folikulárního epitelu, tím dochází k otevření folikulárních ústí, omezení tvorby mazu a redukci aknózních lézí. Tento laser je ideální k léčbě papulopustulózní formy akné.

Lasery využívané k fotorejuvenaci (omlazení pleti)

Omlazení pleti lze provádět různými typy laserů, např. pulzním diodovým laserem (1450 nm), či pulzním barvivovým laserem (585–595 nm). Lze použít i IPL.

Laseroterapie je jeden z nejrychleji se vyvíjejících oborů. Lasery zjednodušily mnohé léčebné postupy, zkrátily rychlost hojení a přinesly pacientům větší komfort. Díky laserům můžeme zásadně léčit mnohé vrozené malformace, které se jevily dříve jako neřešitelné.

Literatura:

  • Adamcová H. Využití laserů v dermatologii, Trendy v medicíně 2002; 4(5).
  • Chaloupecká J. Možnosti využití laseru v dermatologii, Dermatologie pro praxi 2008; 2 (2).
  • Gianfaldoni S. et al. An Overview of Laser in Dermatology: The Past, the Present and … the Future (?), Open Access Maced J Med Sci 2017; 5 (4).
  • Navrátil L. et al. Nové pohledy na neinvazivní laser. 2015. Praha: Grada Publishing. ISBN 978-80-247-5292-6.

Mirka Fimelova

Lasery v meteorologii

By |

Lidary jsou laserové radary používané k měření částic v otevřené atmosféře. Laserový paprsek je pro měření vhodný kvůli své nízké divergenci. Zdrojem lidarového dálkoměru musí však být laser s krátkou a dobře definovanou náběhovou hranou laserového impulsu (<1ns). Pro vzdálenost měření do 1 kilometru se využívá GaAs laser (Δl≈10 cm), do 10 kilometrů pak Nd:YAG laser (Δl≈1 m). K zjišťování vzdáleností družic, pohybu kontinentů a nebo gravitačních anomálii (1 000 kilometrů) se využívá rubínový laser 1 ns/109 W Δl≈(1-10)m.

Princip fungování Lidaru je založen na tom, že sledujeme jak se chová a mění laserový paprsek vyslaný do atmosféry. Laserový paprsek se zde částečně odráží a částečně rozptyluje molekulami a aerosoly nebo se odráží na odražeči. V atmosféře může dojít k několika různým druhům odrazů.

Odraz záření od instalovaného odražeče

Paprsek nasměrujeme do atmosféry a záření se vrací zpět po odrazu od odražeče, který je instalován ve vzdálenosti 100 metrů až 10 kilometrů od zdroje. Abychom zabránili absorpci na základních atmosférických komponentech, potřebujeme volit vlnovou délku laseru 9-13 µm. Tato metoda je velmi jednoduchá a experimentálně nenáročná. Příchozí signál při využití této metody nám dává informace o dění na celé optické dráze, kdy však nelze zjistit koncentraci látek. Vhodným laserem pro tuto metodu může být i málo intenzivní polovodičová dioda.

Zpětný rozptyl na topografických překážkách

Tento rozptyl je všesměrový a pro detekci se využívá jen část záření, které se vrací ve směru teleskopu. Přijímací optika a elektronika musí splňovat vysoké nároky. Pro tento typ detekce je využíván výkonný pulzní laser. Z měření získáme informace o celé optické dráze, a také o střední koncentraci sledované látky, avšak nemůžeme určit prostorové rozložení koncentrací.

Rozptyl na molekulách a aerosolech

První rozptyl, na který se zaměříme, je rozptyl Mieův. Mieův rozptyl probíhá na částečkách aerosolu. Mieova teorie je obecná a dá se využít pro výpočet rozptylu na sférických částicích libovolné velikosti a pro částice elektricky nabité. Je však velmi složitá na rozdíl od Rayleighovy teorie. Rayleighova teorie však musí splňovat dvě podmínky:

– rozptylující částice musí být elektricky nevodivé

– musí být splněna relace: , kde r je poloměr rozptýlené částice a λ je vlnová délka.

Rayleighův rozptyl je založen na rozptylu světla na molekulách plynu a nebo jiných častic, které jsou menší než vlnová délka záření. Rayleighův rozptyl také dokazuje, že světlo s kratší vlnovou délkou se rozptyluje více, než světlo s vlnovou délkou delší. Tím si můžeme vysvětlit, proč je obloha modrá.

Obr.1: Odrážení různých vlnových délek v atmosféře.

Posledním druhem rozptylu, ke kterému dochází v atmosféře je rozptyl Ramanův. K rozptylu dochází při střetu záření s molekulou. Po nárazu má rozptýlené světlo jinou vlnovou délku a energii. Při této metodě můžeme molekuly ve vzduchu identifikovat pomocí rotačních a vibračních hladin. Při měření získáme informace o všech molekulách, se kterými se paprsek při letu srazil. Můžeme tedy díky tomu určit, jaké sloučeniny jsou v atmosféře přítomné a z měřené intenzity je možné zjistit i jejich koncentraci. Zpoždění signálu poté určuje vzdálenost sloučenin od zdroje.

Obr.2: Ramanův LIDAR: L – laser, E – expandér paprsku (kolimátor), T – teleskop, S – spektrometr, MA – multikanálový analyzátor

Vrácený laserový paprsek je na zemi zachycen teleskopem spolu s filtry, fotodetektorem a fotonásobičem. Díky tomu je možné pohltit odražené paprsky, a též paprsky rozptýlené směrem k teleskopu. Abychom byli schopni vypočítat vzdálenosti, potřebujeme vědět odraz a dobu letu laserového paprsku.

Rozptýlený laserový paprsek nám dává informace o složení atmosféry. Díky tomu je možné určit, o jaké molekuly se jedná dle různé frekvence, různé amplitudy a změny v čase. Pokud k naší aparatuře přidáme i spektrometr, jsme schopni určit spektrum přijatého paprsku.

Pomocí použitých zařízení jsme schopni změřit výšku spodní hranice oblačnosti, turbulence, profil mraků, proudění vzduchu v atmosféře, nebo výskyt různých látek v ovzduší.

Obr.3: LIDAR: L – laser, VT – vysílací teleskop, Z1 a Z2 zrcadla Newtonova teleskopu, M – monitorovaná oblast, F – filtr, FN – fotonásobič

 

Obr.4: Teleskopy: a – Newtonův teleskop, obraz převrácený; b – Cassegrainův teleskop, obraz převrácený; c – Gregoryho teleskop, obraz přímý

 

 

Autor textu: Kateřina Pilná

Perserverance Mars 2020 Rover

Lasery na Mars!

By |

S lasery se v dnešní době můžeme setkat v mnoha odvětvích. Jak všichni víme, laser se dá využít k řezání, sváření a je také důležitou součástí mnoha lékařských zákroků. Ne všichni si však dokáží představit, jak by nám mohl laser pomoci ve vesmíru. Proto bychom si toto využití nyní popsali a vysvětlili. Read More

Operace očí laser

Operace šedého zákalu aneb od vypichovačů po laser

By |

Jak jistě víme, laser s postupem času našel využití v mnoha odvětvích. Velmi důležité je jeho využití v medicíně. Vedle využití v chirurgii (sterilní řezání), dermatologii (odstranění pigmentových név nebo tetování) a stomatologii (vrtání zubů) je velmi důležité a převratné využití v oftalmologii. Velkým přelomem ve využívání laseru v oftalmologii bylo úspěšné léčení šedého zákalu.

Šedý zákal (katarakta) se u člověka projevuje snížením možnosti akomodace čočky. Při této nemoci se sníží možnost pacienta vidět na blízko a plně pohybovat okem. Čočka oka tvrdne, až se přemění v tvrdou „fazolku“. Díky tomuto procesu se zužuje zorné pole a může dojít až k úplné ztrátě zraku.

Operace katarakty je považována za nejstarší zákrok v dějinách nejen oftalmologie, ale také samotného lékařství. V minulosti (historické záznamy sahají do doby 2000 let př. n. l.) byla tato nemoc pouze oddalována. V té době existovali tzv. vypichovači, kteří prováděli reklinaci čočky (pomocí jehly zatlačili čočku hlouběji do sklivce) a tím rozšířili zorné pole pacienta. Pokud zatlačení nebylo možné, byla čočka jehlou roztříštěna. Při zákroku nebyla pacientovi podávána anestetika, jelikož v bělimě oka je malé množství nervů. Tento zákrok však nebyl sterilní a pacientovy ve většině případů tento zákrok zapříčinil infekci nebo zánět, a často docházelo následně k úplnému oslepnutí.

Operace očí, historie

Davielova lžička

Nová metoda léčby, tzv. extrakce šedého zákalu, byla světu představena až v roce 1747 Jacquesem Davielem. Operace byla založena na principu, ve kterém docházelo k rozříznutí oka a vyjmutí zakalené čočky. Pouzdro čočky bylo v oku ponecháno. Pokud v pozdější době došlo k opětovnému zakalení pouzdra čočky, musel se v pouzdře operativně vytvořit otvor, který umožňoval průchod světla.
K modifikaci operační metody došlo na konci 19. století. Při tomto zákroku docházelo k vyjmutí jak zakalené čočky, tak i jejího pouzdra. Při operaci byl používán nástroj zvaný Davielova lžička.

Další vývoj léčebné metody byl zaznamenán v 60. letech minulého století, kdy byla světu představena metoda kryoextrakce. Jejím principem bylo namražení čočky uvnitř oka a její postupné vyjmutí pomocí kývavých pohybů. Tato metoda však byla velmi nebezpečná, jelikož je u ní velké riziko narušení sklivcové bariéry a následných komplikacích při operaci. Po zákroku v oku zůstane z původní čočky pouze její čiré pouzdro, do kterého se následně pomalým usazováním fixuje čočka z umělé hmoty.
Revoluce v léčbě šedého zákalu proběhla v roce 1967, kdy Charles Kleman představil metodu fakoemulsifikace. Tato metoda ultrazvukového rozmělnění a následného odsátí čočky se používá dodnes. Zákroky byly původně prováděné za celkové anestezie, ale se zdokonalováním operačních technik se přešlo k anestezii lokální.

Šedý zákal

Oko se šedým zákalem

Stávající metodu léčby šedého zákalu si popíšeme přesněji. Jak již bylo řečeno, bavíme se o léčbě primární katarakty. Pokud se podíváme na oko postižené šedým zákalem, můžeme si všimnout, že čočka oka je zatmavená a málo pohyblivá.
Prvním krokem, který se při zákroku provádí, je natrasování bodů, aby bylo možné laser správně vycentrovat a zaostřit do jednoho bodu. Poté se pomocí excimerového laseru do oka vyšle laserový paprsek, který je koncentrovaný v místě tkáně tak, aby nedopadal až na sítnici. V oku se vytvoří plasma a spolu s ní také rázová vlna, která čočku roztříští. Poté jsou milimetrovým otvorem vyndány útržky čočky z oka. Dalším krokem je vypláchnutí pouzdra čočky pomocí solného roztoku, který je nejvíce podobný oční kapalině. Následně je umělá čočka vložena do pouzdra původní čočky pomocí milimetrového trychtýřku, který je přichycen dvěma háčky na trabekulu. Potom už jen dochází ke kontrole, zda vše správně sedí. Po zákroku, který trvá 15 až 20 minut, pacient odchází s obnoveným zrakem. V následujících několika týdnech musí dotyčný užívat oční kapky a po 14 dnech se dostavit na kontrolu.

V případě, že oční pouzdro nebylo dostatečně vymyté, může dojít ke vzniku sekundární katarakty. Buňky roztříštěné čočky totiž narůstají a vyplňují zadní stranu pouzdra. Pokud dojde k vytvoření sekundární katarakty, je potřeba provést další zákrok. Při této operaci se vytvoří jiskra za umělou čočkou, která vytvoří průboj, který opět ztvrdlé buňky roztříští a další postup se opakuje stejně jako v případě primární katarakty. Vývoj této metody léčby je velmi důležitý, jelikož může pacientovi plně navrátit zrak.

Od prvních metod léčby šedého zákalu jsme „ušli velkou cestu“ a jsme nyní schopni tuto nemoc léčit rychle, bezbolestně a s efektivními výsledky.

 

Autor textu: Kateřina Pilná

Obranné lasery – Ing. Tomáš Primus

By |

Historie laserů sahá do 60. let minulého století. Od té doby se začínalo uvažovat o možnostech použití laserů pro obranu. Za prezidenta Reagana v 80. letech se v USA začaly objevovat první nápady na využití laserů jako obranných zařízení proti létajícím objektům. Stále však nebyl vývoj laserů tak daleko, aby se tyto plány mohly uskutečnit, avšak myšlenka zůstala a americká vláda začala financovat první výzkumy v oblasti obranných laserů. Druhou myšlenkou, která se v souvislosti s lasery a jejich využitím v boji diskutovala, bylo využití laserů proti vojákům s cílem ochromit jejich vidění, popř. další měkké tkáně. To ale bylo zavrhnuto jako nehumánní a jedinou vývojovou linkou tak zůstalo využít laserů pro obranu proti létajícím objektům. Myšlenka se stala skutečností v roce 2014, kdy námořnictvo Spojených států instalovalo první obranný laser na letadlové lodi USS Ponce. Po několika letech výzkumu a utracení více než 40 milionech amerických dolarů byl na světě první funkční laserový obranný systém s názvem LaWS (Obr. 1). Jednalo se o pevnolátkový 30kW laser, který vzdáleně připomíná teleskop pro pozorování hvězd. Právě vývoj optiky pro takovéto lasery je problematický, protože na rozdíl od čoček, které se v průmyslu používají pro fokusování paprsku a mají ohniskovou vzdálenost v jednotkách centimetrů, je zde třeba fokusovat paprsek na vzdálenost stovek metrů. Nová generace laserového systému LaWS má efektivně eliminovat cíle až na vzdálenost 1,5 km. Myšlenými cíli jsou zejména drony, nebo nepřátelské čluny. Díky kamerovým systémům a propracovanému systému navádění dokáží obranné lasery velmi rychle zaměřit a eliminovat nepřátelské cíle. U plujících člunů to může být vyřazení motoru, u letícího dronu třeba zničení vrtulí.

Obr. 1 – Obranný systém LaWS využívající 30kW vláknový laser

Umístění prvních obranných laserů právě na lodě mělo i svůj význam. Lasery spotřebovávají velké množství energie, je potřeba je chladit a jsou poměrně rozměrné. Dále se testovala jejich odolnost proti slanému mořskému prostředí a rozmarům počasí. Vývoj jde stále dál a snahou je systémy zmenšovat, tak aby bylo možné jejich použití i na obrněných vozidlech pro eliminaci cílů na souši.
A jaká je hlavní myšlenka použití laserů ve vojenství? Jsou to určitě provozní náklady, kdy jedna střela, řekněme sestřelení, protože se tyto systémy jen málo kdy mílí, stojí jednotky dolarů. A oproti raketám, které stojí několik tisíc dolarů, mají obranné lasery velký potenciál. I to si uvědomují velké zbrojařské velmoci a vývoj laserů významně podporují.
V letošním roce má námořnictvo USA pořídit od firmy Lockheed Martin nové generace laserů LaWS za 150 miliónů dolarů. A to není všechno. Zároveň se diskutuje o dalším kontraktu za miliardu dolarů. Další vývoj je jasný, a to směrem ke větším výkonům používaných laserů. Ten má v následujících pěti letech dosáhnout až desetkrát víc, než první obranné lasery, a to až 300 kW. Zároveň je snaha o snížení hmotnosti a velikosti celého systému, zvýšení účinnosti (přeměna elektrické energie na světelnou) a využití umělé inteligence pro rychlou eliminaci více cílů.

obr.2 – Ukázka použití obranných laserů pro sestřelování dronů

obr. 3 – Vývoj obranných laserů a jejich aplikace na bojová vozidla

Co stojí za zmínku tak jsou i aktuální nevýhody obranných laserů. Je to zejména jejich použitelnost, protože aby mohl být laser použit potřebuje nějaký čas pro uvedení do provozu, zahřátí. Zároveň jsou současné systémy náročné na spotřebu energie a potřebu chlazení, což činí celý sytém velmi robustním. Posledním problémem je použitelnost za dobrých vizuálních podmínek a na cíle, které se nacházejí v dostřelu, což je třeba pouze 1-2 km od laseru. Vše si výzkumné týmy uvědomují a v následujících letech chtějí tyto nevýhody eliminovat. Pokud se to povede bude možné používat lasery např. pro sestřelování balistických raket v jakékoliv fázi jejich letu.
Vývoj jde stále dopředu a použití laserů pro obranu dostává stále nový rozměr a použitelnost.

https://www.theatlantic.com/politics/archive/2014/12/a-brief-history-of-militarized-lasers/453453/

https://www.lockheedmartin.com/en-us/news/features/2019-features/how-laser-weapons-are-changing-the-defense-equation.html

https://www.militaryaerospace.com/sensors/article/16722085/military-eyes-prototype-megawattclass-laser-weapon-for-ballistic-missile-defense-in-next-seven-years

https://breakingdefense.com/2014/12/star-wars-at-sea-navys-laser-gets-real/

https://www.spacedaily.com/reports/Navy_orders_laser_weapon_systems_from_Lockheed_Martin_999.html

Lasery v medicíně

By |

Autor: Kateřina Pilná

Jak jistě víte, laserová záření mají mnohá použití. S jejich pomocí můžeme svařovat, řezat, provádět diagnostiku materiálů, vyrábět zábavní techniku a to zdaleka není všechno. V tomto článku se však budeme zaobírat jejich využitím v medicíně. Musíme si nejprve uvědomit, že lasery využívají velké množství energie, která však může být pro lidské tělo i nebezpečná.

Nejdříve si připomeňme, co vlastně laser je. Laser (Light Amplification by Stimulated Emission of Radiation) je optický zdroj koherentního a monochromatického elektromagnetického záření a je tvořen několika částmi. Těmi hlavními jsou aktivní prostředí, rezonátor a buzení (zdroj energie).

Abychom mohli říci, jak dopadne interakce laserového záření s tkání, musíme znát nejen parametry záření ale také biologické tkáně, se kterou přijde do styku. Dále záleží na typu interakce (primární nebo sekundární. Nejdůležitějšími parametry laseru je délka pulsu (doba, po kterou je tkáň vystavena záření), vlnová délka záření a hustota energie dopadající na tkáň. Typy tkání, které mohou být zasaženy laserovým zářením, jsou dva: tvrdé tkáně (sklovina, kost nebo kalcifikovaná tkáň cév) a tkáně měkké (ostatní tkáně).

Mezi primární typ interakce patří reflexe, absorbce, rozptyl, transmise a refrakce. Refrakce (lom) hraje významnou roli v ozařování transparentního média (tkáň rohovky). Při absorpci záření je nutné tkáně před i po zákroku chladit (ablativní fotodekompozice). U sekundárních parametrů (fotochemická interakce, teplotní interakce, fotoablace, plasmou indukovaná ablace a fotodisrupce) je třeba brát v potaz, že důsledky zásahu tkáně zářením nemusí být pouze chtěné (při operaci), ale mohou se vyskytnout také některé nežádoucí (zahřívání tkáně atd.).

První odvětví medicíny, kterému se budeme věnovat, je oftalmologie. Nejčastěji léčenou tkání v tomto odvětví je oční sítnice (protržení, odchlípnutí, diabetická retinopatie, stařecká degenerace, nádor). Abychom si přiblížili proces operace, vybereme si specifické onemocnění, na kterém si výhody použití laseru vysvěltíme. Diabetická retinopatie je onemocnění sítnice, které vzniká při cukrovce. Příznaky této nemoci jsou například zhoršení ostrosti vidění a vznik tmavých skvrn v zorném poli. Některé cévy v oku odumírají kvůli nedostatku kyslíku, aby však bylo i nadále zajištěno proudění do kyslíku do oka, tvoří se nové cévy, které však rostou na nesprávném místě (před sítnicí). Tyto nově vytvořené cévy způsobují krvácení do sklivce. Na léčbu sítnice se používá argonový laser (514 nm), kryptonový laser (568 nm) a Nd:YAG laser (532 nm). Léčba však nemoc pouze stabilizuje nebo zpomalí, k obnovení zraku nedochází.

Glaukom (zelený zákal) je onemocnění očí, které bez léčení může skončit trvalou ztátou zraku. Příznaky nemoci nejsou patrné až do doby, kdy se naruší centrální vidění. Možností léčby tohoto onemocnění je několik, zkusíme si tedy přiblížit alespoň některé. Laserová iridotomie je metoda léčby při které se vytváří otvor v plné tloušce duhovky. Před zákrokem, který je prováděn laserem, jenž je připojen ke štěrbinové lampě,  je pacientovi aplikována lokální anestezie. Při této metodě  se používá Nd:YAH (pro světlé duhovky)  nebo argonový (pro tmavé duhovky), Dalším možným zákrokem je cyklofotokoagulace. Principem této léčby je osvícení řasnatého tělíska pomocí výkonného laseru (Nd:YAG nebo diodový laser). Po ozáření se sníží tvorba nitrooční tekutiny, díky čemuž dojde i ke snížení nitroočního tlaku.

V dermatologii má laser široké využití při hojení jizev, ran, proleženin nebo třeba pigmentových skvrn. Pro tyto účely se využívají lasery s nízkým výkonem, díky čemuž lze dosáhnout biostimulace buněk tkáně. Léčba je potom velmi rychlá, efektivní a komfortnější pro pacienty. Pro kosmetické vady, jako je například akné nebo nechtěné ochlupení, se využívá termodestrukce, tento zákrok má zpravidla několik fází. Vždy je laser zamířen na melaninové buňky, které má zničit.

Chirurgický laser může fungovat na dvou psrincipech. Prvním z nich je odpařování kapalin z měkkých tkání, zatímco druhý princip je založen na rozbíjení molekulárních vazeb látek, které se nacházejí v tkáni. V chirurgii se při malých zákrocích, jako je například odstranění zarůstání nehtů, používá povrchový CO2 laser. Neodymový laser (1064 nm) spolu s rubínovým vodícím paprskem zase nachází své uplatnění při zástavě krvácení.

Využití laseru nese mnohé výhody i v odvětví urologie, v tomto případě jsou ale zákroky vykonané pomocí laseru pouze alternativou. Hlavním důvodem, proč se využití laserového záření dostává do popředí, je zkrácení doby léčby po operaci a také menší počet reoperací. Nejčastěji využívanými lasery v urologii jsou Holmium:YAG (2140 nm) a KTP lase (532 nm).

V gynekologii se laser nejčastěji používá k zacelování ran a k léčbě jizev. Lasery používané k zákrokům na sliznici však musí mít delší vlnovou délku, jelikož je sliznice na působení laseru citlivější než například kůže.

V revmatologii se laser používá při léčbě artróz a dalších onemocnění, v tomto případě je léčba vždy doprovázena léky. Díky protizánětlivým účinkům laseru (830 nm) se z něj stala samozřejmá součást standardní výbavy ve specializovaných pracovištích. Laser se také používá při rehabilitaci. Povchová aplikace se používá na léčbu jizev, kde se pro plošnou aplikaci využívá laserový scenner.

Ve stomatologii se využívá silného laseru místo zubních vrtaček. Výhodou jeho použití je menší bolestivost po zákroku. Široké využití má laser u zánětlivých onemocnění, paradontózy a při zvyšování odolnosti zubní skloviny.

Oftalmologický laserový systém

Odstranění mateřských znamének laserem

Autor textu: Kateřina Pilná

 

Buňka pro laserové svařování

Technologie svařování laserem

By |

Autor: Ing. Tomáš Primus, ČVUT

Spolu s vývojem potřeb trhu se vyvíjí i technologie laserového svařování. Progresivní rozvoj v posledních letech zaznamenala tato technologie zejména kvůli vývoji nových, vysokovýkonných diodových a vláknových laserů a dále také s vývojem robotů a automatizace. Laserové svařování je nejvíce zastoupené v automobilovém, leteckém, kosmickém, jaderném a lodním průmyslu. Dále také všude tam, kde jsou kladeny vysoké požadavky na kvalitu svaru, hloubku průvaru a vzhled. Laserové svařování využívá dvě základní techniky podle intenzity laserového paprsku. Při nižších intenzitách se využívá technika kondukčního svařování. Ta je založena na natavení povrchu materiálu a vytvoření spoje při jeho zchladnutí. Výsledný svar je mělký a velmi podobný svarům při obloukovém svařování. Při použití vyšších intenzit laserového paprsku dochází k penetračnímu svařování, kde se ve svarové lázni vytvoří dutina zvaná keyhole. Pro tuto metodu je typický štíhlý, dlouhý svar. Metodou kondukčního svařování se typicky svařují plastové materiály, metodou keyhole se svařují kovové materiály. [1] [2] [3]

Technologie laserového svařování – kondukční a penetrační způsob [11]

Pro svařování laserem se využívají pevnolátkové i plynové lasery, nejvíce s aktivním prostředím CO2, Nd:YAG a aktivního vlákna. V poslední době se dostávají do popředí i diodové lasery. Obecnou výhodou při použití pevnolátkových laserů je možnost vést paprsek v optickém vlákně kvůli snadnému dopravení paprsku od zdroje do procesní hlavy. Dále je tím také podpořena možnost polohování ve více osách – typicky svařování robotem. [3] [4]

Buňka pro laserové svařování

Buňka pro laserové svařování s využitím laseru a polohovacího stolu [4]

Výkon laserů pro svařování se liší podle materiálu a použité technologie. Pro svařování ocelí se používají lasery s výkonem jednotek až desítek kW. Nejvyšší aktuálně dosažení výkon svařovacích laserů je 120 kW a tento laser se používá pro svařování lodních trupů.

Na začátku tohoto článku byly zmíněné hlavní techniky laserového svařování, z nich pak vychází další, které nejsou tolik známé, ale mají velký potenciál. Tou první, kterou bych zmínil, je technika od firmy IPG [5] a jejím hlavním smyslem je nahradit techniku bodového (odporového) svařování v oblastech vysoce namáhaných spojů v automobilovém průmyslu. Technologie seam stepper kombinuje poznatky z odporového svařování a vysoce výkonné vláknové lasery. Princip této technologie spočívá v přitisknutí kleští v oblasti spoje dvou plechů a vytvoření svarové housenky pomocí rozmítání laserového svazku. Díky využití kleští podobných těm pro bodové svařování, je laser seam stepper bezpečné pro své okolí a spadá tedy do bezpečností třídy 1. To znamená, že není zapotřebí mít kolem svařovací buňky speciální ochranné prvky. [5] [6] Po přitisknutí kleští ke spojovanému místu se provede svar, který má podobu svarové housenky. Na rozdíl od bodového svařování, je takto vytvořený spoj únosnější a pevnější. Je proto možné odporové bodové svary nahradit menším počtem laserových svarů, a tím zmenšit potřebný prostor na plechovém dílu pro svary a zároveň zkrátit výrobní časy a nutnosti dalšího polohování robota. V praxi se tato technika používá u svařování karoserií automobilu VW Golf, konkrétně se jedná o přivaření C sloupku (mezi dveřmi řidiče a Imagezadními dveřmi). Díky použití technologie laser seam stepper je výrobní čas poloviční, stejně tak i počet svarů, za dodržení stejné únosnosti spoje jako u klasického bodového svařování.

Obr. 3: Speciální laserová hlava pro seam stepper podobná bodovacím kleštím [5]

Další technologií představenou firmou IPG je technologie trifokálního svařování. Podstatou této metody je rozdělení svařovacího paprsku na tři paprsky, z toho dva slouží pro předehřev a třetí pro hlavní svařování. Hlavními výhodami této technologie jsou zejména: snížení potřeby předčištění součásti a lepší průvar díky předehřevu. Technologie trifokálního svařování je dobře aplikovatelná např. pro svařování žárově zinkovaných ocelových plechů. Standartně se pro trifokální svařování např. střechy automobilu k rámu používají lasery s výkonem 4,5 kW.

Technologie trifokálního svařování - model

Obr. 4: Technologie trifokálního svařování – model [12]

Ze všech zmíněných technologií je technologie adjustable mode beam (AMB) nejnovější. Tato technika laserového svařování umožňuje kombinovat techniku svařování prstencovým a Gaussovským profilem paprsku. [7] Při klasickém keyhole svařování (z úvodu tohoto článku) laserový paprsek taví materiál, který se odráží od pevných stěn v okolí svarové lázně a může docházet k rozstřiku taveného materiálu. Tyto odlétající kapičky mohou způsobovat optické vady na svařovaném materiálu. Technologie AMB omezuje výtrysk materiálu a způsobuje lepší provaření. [7]

Porovnávání technologie svařování

Obr. 5: Porovnání technologie svařování Gaussovským profilem svazku a technologií ABM [7]

Porovnání technologie svařování Gaussovským profilem svazku a technologií ABM [7]Poslední „speciální technikou“ laserového svařování je skenerové svařování (Remote laser welding), které je ale už v běžné praxi používanou technologií. V této technologii se místo klasické svařovací hlavy používá skenovací hlava, stejná jako např. pro mikroobrábění nebo popis. [8] Paprsek je ve skenovací hlavě vychylován pomocí dvou zrcátek v osách x,y, a v kombinaci spolu s šestiosým robotem, má tato technologie k dispozici 8 stupňů volnosti. S výhodou se zde využívá pohybu svazku po polokružnicích, zvaný wobbling. [9], [10]

V porovnání s klasickými technologiemi svařování je laserové svařování produktivní, dobře se automatizuje a zajištuje úzký a hluboký průvar. Nevýhodu jsou pak vysoké pořizovací náklady a nutnost ochrany před laserovým zářením. Díky zmíněným výhodám a klesajícím cenám laserových zdrojů spolu s rostoucí účinností přibývají další nová odvětví, již tak velmi silně zastoupeného, laserového svařování.

Skenovací svařování

Obr. 6: Skenovací zařízení – Trumpf [13]

Použitá literatura:

1. MRŇA, L. Aktuální možnosti v laserovém svařování. Brno: 2018, č. 2018/1, s. 44 [cit. 2018-11-04]. Dostupné z: https:/​/​www.mmspektrum.com/​clanek/​aktualni-moznosti-v-laserovem-svarovani.html
2. MRŇA, L. Odbor technologie svařování a povrchových úprav. In: Technologie využívající laser [online]. 2014 [cit. 2018-11-10]. Dostupné z: http:/​/​ust.fme.vutbr.cz/​svarovani/​img/​opory/​hsv_specialni_metody_svarovani_svarovani_laserem_2013_mrna.pdf
3. KATAYAMA, S. Handbook of Laser Welding Technologies [online].. GB: Woodhead Publishing Ltd, 2013 [cit. 2020-04-28]. ISBN 0857092642.
4. TRUMPF. TRUMPF. TruLaser Weld 5000 [online]. 2020 [cit. 2020-04-27]. Dostupné z: https:/​/​www.trumpf.com/​cs_CZ/​produkty/​stroje-systemy/​zarizeni-pro-svarovani-laserovym-paprskem/​trulaser-weld-5000/
5. SIEWERT, A. a K. KRASTEL. Fiber laser seam stepper replacing resistance spot-welding. Burbach, Německo: Laser Technik Journal, 2014, č. 4 [cit. 2018-listopad-02]. Dostupné z: https:/​/​www.ipgphotonics.com/​en/​115/​Widget/​Fiber+Laser+Seam+Stepper+Replacing+Resistance+Spot-Welding.pdf
6. CORPORATION, I. P. IPG Laser Systems. The Laser Alternative to Resistance Spot Welding [online]. 2019 [cit. 2020-04-28]. Dostupné z: https:/​/​lasersystems.ipgphotonics.com/​products/​laser-seam-stepper/​Laser-Seam-Stepper#nav-products-specifications
7. IPG, P. C. IPG Photonics. YLS-AMB Adjustable Mode Beam Lasers [online]. 2019 [cit. 2020-04-29]. Dostupné z: https:/​/​www.ipgphotonics.com/​en/​217/​FileAttachment/​AMB+Welding+Benefits.pdf
8. SCANLAB GmbH. Remote Laser Welding [online]. [cit. 2018-listopadu-04]. Dostupné z: https:/​/​www.scanlab.de/​en/​products/​advanced-scanning-solutions/​remote-laser-welding
9. SPI Lasers. Tailored Precision Micro Welding with a CW/M Fiber Laser [online]. [cit. 2018-listopad-04]. Dostupné z: https:/​/​www.spilasers.com/​application-welding/​tailored-precision-micro-welding-with-a-cwm-fiber-laser/
10. Industrial laser solutions for manufacturing. Remote laser welding in automotive production [online]. 9. ledna. 2011 [cit. 2018-listopad-04]. Dostupné z: https:/​/​www.industrial-lasers.com/​articles/​print/​volume-26/​issue-5/​features/​remote-laser-welding-in-automotive-production.html
11. MRŇA, L. a P. HORNÍK. Pokročilé metody laserového svařování. 2017, č. 3, s. 104 [cit. 2018-listopad-04]. Dostupné z: https:/​/​www.mmspektrum.com/​clanek/​pokrocile-metody-laseroveho-svarovani.html
12. IPG Photonics. Fiber Lasers for Trifocal Brazing and Welding [online]. [cit. 2018-11-09]. Dostupné z: https:/​/​www.ipgphotonics.com/​en/​products/​lasers/​high-power-cw-fiber-lasers/​1-micron/​yls-br#[applications-94]
13. Trumpf. Skenerové svařování – vysoce produktivní obrábění bez prostojů [online]. [cit. 2018-listopad-04]. Dostupné z: https:/​/​www.trumpf.com/​cs_CZ/​pouziti/​svarovani-laserovym-paprskem/​skenerove-svarovani/

 

 

Chirurgické aplikace laserů

By |

Již krátce po tom, co v roce 1960 Theodore H. Maiman předvedl první funkční laser – jednalo se tehdy o pulsní rubínový laser – začalo se uvažovat o praktických aplikacích této technologie. Připomeňme, že laser je přístrojem, který je schopen vyzařovat světlo ve formě úzkého, koherentního a monochromatického svazku. Tím se liší od přirozených světelných zdrojů. Ostatně samotné slovo laser je akronymem z anglického Light Amplification by Stimulated Emission of Radiation – tedy „zesilování světla stimulovanou emisí záření“. Máme tedy co dělat s technologií, která může pomocí usměrněného proudu fotonů přenášet značné množství energie na úzce vymezeném prostoru.

To ji předurčuje k tomu, aby byla dobře aplikovatelné v oborech, které vyžadují efektivitu a mimořádnou přesnost. Což jsou přesně ty kýžené vlastnosti, které si vyžaduje chirurgie. Účinek správně aplikovaného laseru na tkáně je totiž takový, že energii paprsku přeměňuje na energii tepelnou. Ta se v úzkém prostoru paprsku projeví tak, že – naprosto prozaicky řečeno – řeže.

Laserový skalpel má tak oproti skalpelu klasickému několik výhod, především pracuje s velmi jemným profilem řezu a při kombinaci se správnými řídícími technologiemi je mnohem přesnější, než dokáže být ruka sebešikovnějšího chirurga svírající ocel. Při správném nastavení a za ideální konfigurace tak paprsek řeže bez zásahu do okolních tkání a jeho účinek de facto probíhá na molekulární úrovni rozpouštěním vazeb. Samozřejmostí takové operace je navíc naprostá sterilita.

V medicíně se laserové přístroje dělí podle výkonu, kdy se hovoří o laserech neinvazivních čili terapeutických (do 500mW) a o chirurgických – invazivních (nad 1W). Vedle určení výkonu navíc každá chirurgická aplikace vyžaduje velmi přesnou specifikaci použití laseru. Zjednodušeně řečeno: paprsky o kratší vlnové délce nepronikají tak hluboko do tkáně, působí ale silněji; delší vlnové délky mají zase slabší účinek, ale hlubší průnik. Podle potřebného efektu se volí i typ používaného laseru, kdy například neodymový laser je vhodný pro gastroenterologické operace, excimérový při zprůchodňování cév a např. barvivovým se rozbíjejí žlučníkové kameny. Paleta užívaných laserů je ale ještě mnohem širší.

Zajímavé je, že podle nastavení laseru může lékař dosáhnout různých efektů při zasažení tkáně, z nichž každý je vhodný pro jiný typ zásahu. Hovoří se tak o těchto účincích laserového paprsku: Fotokoagulace, tedy v podstatě zničení tkáně sražením. Toto má široké využití při korekci počínající ztráty zraku, nejčastěji u tzv. diabetické retinopatie. Dalším možným zásahem je vaporizace, odpaření, tkáně. Podobným efektem je tzv. ablativní fotodekompozice, kdy se v z tkáně v podstatě vysokou teplotou odpařují části molekul. Při využití laseru k prudkému zvýšení teploty v tkání (až na 1250 °C) dochází ke zvýšení tlaku a roztržení struktury tkáně – laser pak opravdu doslova řeže. Lasery lze ale dosáhnout i sofistikovanějších efektů vyvolaných reakcí na extrémní podmínky laserového paprsku. Příkladem je tzv. fototermální efekt, kdy lze laserem zastavit krvácení některých tkání. Jiným příkladem je tzv. fotochemická reakce, kdy energie laseru v podstatě aktivuje proces změny chemické struktury tkáně.

S takovou škálou možností jistě nepřekvapí, že laserové technologie suverénně zasáhly do celé řady lékařských odvětví, kde je potřeba chirurgických zásahů. Vůbec poprvé se laseru užilo při oftalmologických operacích, v praxi prvně již v roce 1987. Citlivé prostředí oka je jako dělané pro užití přesných a pevně cílených zásahů laserového paprsku. Variant operací existuje dnes obrovské množství a lze s nimi jak napravovat zrakové vady, tak odstraňovat degenerativní nemoci jako různé zákaly, retinopatie a podobně.

S trochou nadsázky lze říci, že co je v laserových technologiích supermoderní, to se brzy aplikuje v oftalmologii. Dnes se například prosazují zásahy pomocí tzv. femtosekundového laseru. To je zařízení, které je schopné v řádech femtosekund (1 sekunda = 1015 fs) produkovat laserové pulsy, které vytváří v oční tkáni rastrové tvary sloužící ke korekci vad a odstraňování šedého zákalu. Sám femtosekundový laser je přitom strojem, který by se před 20-30 lety vyjímal spíše ve sci-fi románu.

Chirurgické využití mají lasery i v ortopedii, kdy pomáhají léčení kostí, také ale odstraňují různé nádory, puchýře a cysty, které mohou během léčby vznikat. Stále větší roli pak mají lasery při operacích trávící soustavy, protože tkáně střev i žaludku dobře reagují na výše řečenou koagulaci. Je tak možné odstraňovat nejen žaludeční vředy, ale i nádory a cévní deformace.

Samostatným tématem by bylo využití laserů ve stomatologii. Silné lasery začínají nahrazovat zubní vrtačky, kdy je možné soustředěným paprskem přímo „vrtat“ tvrdý materiál zubů, a to při mnohem nižší bolestivosti. I slabší, krátkovlnné lasery ale pomáhají, neboť stimulují tkáně při léčbách paradontóz, zánětů, demineralizace zubů a podobně. Dokonce existuje technologie, která pomocí laserových aplikací zvyšuje odolnost skloviny.

Dodejme ještě, že velkým lékařským oborem, v tomto případě nechirurgickým, který lasery také opanovaly, je dermatologie. Zde se využívají spíše lasery s nízkými výkony, které stimulují tkáně a pomáhají tak odstraňovat jizvy, hojit rány, léčit opary a proleženiny, odstraňovat nežádoucí ochlupení a akné a podobně. Na jednu stranu se může takové ozařování zdát oproti femtosekundovým pulsům při operacích oka tak trochu banální, na druhou stranu ale pomáhá odstraňovat deformace a vrozené vady, které byly dříve neřešitelné. A to všechno při zachování vysokého komfortu pacienta. Další nechirurgické aplikace jsou například v gynekologii, kde se stimulací tkání pomáhá léčení ran a jizev. V revmatologii se zase využívá protizánětlivý účinek laserové terapie při léčbě artróz.

Ze všech oborů lidské činnosti je tak medicína jedním z těch, kde dnes laserová technologie pomáhá nejvýrazněji. To dává člověku důvod k jistému technooptismu. Existují samozřejmě i vojenské aplikace laserů (o těch někdy příště), ale obecně je myslím povznášející, že co se v popkultuře stalo nezbytnou rekvizitou sci-fi válek, to je v reálu silným nástrojem záchrany zdraví a života.

 

Jak lasery našly uplatnění v archeologii?

By |

Rozvoj laserových technologií přinesl celou řadu praktických aplikací. Některé potkáváme v běžném životě takřka denně a už si je ani neuvědomujeme. Jiné se staly důležitým nástrojem různých oborů, ať už vědních, technických, či praktických. Jednou z takovýchto metod využívajících fyzikální vlastnosti laserů je tzv. LIDAR neboli Light Detection and Ranging, případně jednoduše Light Radar.

Tato technologie se objevila v roce 1961, tedy již velmi krátce po zkonstruování prvních laserů. Tehdy tým pod vedením Malcolma Stitche z Hughes Aircraft Company sestavil zařízení zvané Colidar (Coherent Light Detecting and Ranging). To bylo testováno na možnosti vyhledávání vojenských cílů z letícího letadla. Samotné slovo LIDAR (ne vždy dodržovaný úzus říká, že LIDAR – na rozdíl od radaru – píšeme velkými písmeny) se pak objevilo už v roce 1963.

Paprsek LIDARu vysílaného z observatoře Mauna Loa při mapování aerosolu ve svrchních vrstvách stratosféry. Laser se dobře vybarvil díky mlze. (Zdroj: NOAA Photo Library, Forrest M. Mims III)

Vidíme tedy, co do využití, jistou podobnost s radary. Obě technologie v podstatě měří dobu mezi dopadem vyslaného záření a zachycením jeho odrazu. S tím zásadním rozdílem, že radary využívají elektromagnetické záření, zatímco LIDAR pracuje se soustavou laserových paprsků. LIDAR je tedy metodou měřící – umožňuje měřit vzdálenosti dle doby šíření laserového paprsku odrážejícího se od povrchu snímaného objektu. LIDARové snímání tak vytváří soustavu bodů, které lze následně promítnout do prostorového zobrazení. I pro ty, kteří se s LIDARem ještě nesetkali tak není těžké si představit široké využití v oborech jako je geografie, kartografie, archeologie či řízení autonomních strojů.

LIDAR využívá jak světlo ve viditelném spektru, tak například spektra infračervená či ultrafialová. Obrovskou výhodou je přesný, v podstatě bodový, fokus laserového paprsku. Z letadel je tak například možné rozpoznávat při lidarovém mapování detaily terénu už od velikosti 30 cm. Pro praktické účely se obvykle používají lasery o vlnových délkách 600-1000 nm, případně 1550 nm u specifických aplikací. Nevýhodou LIDARu je oproti radaru relativně krátký dosah, výhodou ale již řečená obrovská přesnost detailů. Můžeme se setkat jak s LIDARovými zařízeními na stacionárních objektech, tak s kombinací LIDARu a např. letadla či dronu.

Jak bylo řečeno, v počátcích LIDARu šlo hlavně o snahu mapovat pohyb nepřátelských objektů, později začaly být objevovány kartografické a další možnosti. LIDARové mapování terénu zažívá v poslední době jistý boom umocněný moderními technologiemi, lepším využitím letadel či použitím dronů. Terénní mapy vzniklé s pomocí LIDARu tak překvapují laika mírou detailu a odhalováním jinak neviděných topografických prvků.

Ukázka digitálního modelu povrchu DSM (A) a digitálního modelu terénu DTM (B) laténského hradiště Vladař u Záhorčic (okr. Karlovy Vary) na základě zpracování dat ze systému LiDAR. Podle GOJDA, M. – J. JOHN – L. STARKOVÁ: Archeologický průzkum krajiny pomocí leteckého laserového skenování. Dosavadní průběh a výsledky prvního českého projektu. In: Archeologické rozhledy 63(4), s. 683.

LIDAR tak přinesl dříve nepředstavitelné možnosti terénní prospekce, které široce využívá například archeologie. Nejenom, že je možné si promítnout známé lokality, navíc lze odhalovat nové. Obrovskou výhodou je možnost pomocí správného nastavení a algoritmů mapovat i skrze vegetaci. Díky tomu u nás LIDARové mapování například pomáhá odhalovat zaniklé středověké vesnice či hledat relikty dávno zaniklých cest v zalesněných územích. Ve světě před pár měsíci badatelům vyrazil dech objev mnoha nových mayských měst v Guatemale. LIDAR tak pomohl odhalit skutečnosti a souvislosti, které by jinak bez této technologie byly možná archeologům navždy zatajené. LIDAR lze navíc použít i k mapování objektů a staveb a vytváření jejich 3D modelů.

Objekty mayské civilizace nalezené ukryté v džungli (zdroj: PACUNAM/CANUTO)

Kromě mapování terénu lze ale stejnou metodu využít například v ekologii a ochraně přírody – velká míra detailu LIDARové projekce totiž umožňuje například sledovat stav lesního porostu, výšku stromů či podobu systému korun. To jsou věci, které bychom z běžného leteckého snímkování prostě nepoznali.

Příklad generovaného zobrazení na základě LIDAR mapování, které srovnává mladý a starý lesní porost a umožňuje studovat jeho plošný stav (zdroj: Sarah Frey, Oregon State University)

Proč se ale při aplikacích omezovat jen na vytváření projekcí terénu? Laserového mapování se tak úspěšně užívá například v meteorologii, kdy jako odrazné plochy slouží vrstvy atmosféry. V takovém případě se ale dostáváme na úplně jiné výkony laserů, neboť je potřeba doslova „pořádně střelit do vzduchu“, aby se získala relevantní data.

Komerčně je pak poslední dobou mimořádně důležité použití LIDAR technologie v autonomních vozech. Mapování totiž probíhá nejen s velkými detaily, ale také velmi rychle. Hledá se tak cesta, jak využívat a zdokonalovat LIDARy pro tuto aplikaci. Existuje ale i kritika, která říká, že pro samořízená vozidla není z různých důvodů LIDAR vhodný.

Samořídící auta společnosti Google s LIDAR zařízeními na střeše (zdroj: Getty Images, Kim Kulish)

Buď jak buď, LIDARové technologie se neustále rozvíjejí. S jistým zjednodušením lze konstatovat, že co do míry praktické aplikovatelnosti jde o jedno z nejpestřeji využívaných laserových zařízení.