-
Celý článek
Lasery na Mars!
S lasery se v dnešní době můžeme setkat v mnoha odvětvích. Jak všichni víme, laser se dá využít k řezání, sváření a je také důležitou součástí mnoha lékařských zákroků. Ne všichni si však dokáží představit, jak by nám mohl laser pomoci ve vesmíru. Proto bychom si toto využití nyní popsali a vysvětlili. (Pokračování textu…)
Zobrazit článek ve Studovně -
Celý článek
Operace šedého zákalu aneb od vypichovačů po laser
Jak jistě víme, laser s postupem času našel využití v mnoha odvětvích. Velmi důležité je jeho využití v medicíně. Vedle využití v chirurgii (sterilní řezání), dermatologii (odstranění pigmentových név nebo tetování) a stomatologii (vrtání zubů) je velmi důležité a převratné využití v oftalmologii. Velkým přelomem ve využívání laseru v oftalmologii bylo úspěšné léčení šedého zákalu.
Šedý zákal (katarakta) se u člověka projevuje snížením možnosti akomodace čočky. Při této nemoci se sníží možnost pacienta vidět na blízko a plně pohybovat okem. Čočka oka tvrdne, až se přemění v tvrdou „fazolku“. Díky tomuto procesu se zužuje zorné pole a může dojít až k úplné ztrátě zraku.
Operace katarakty je považována za nejstarší zákrok v dějinách nejen oftalmologie, ale také samotného lékařství. V minulosti (historické záznamy sahají do doby 2000 let př. n. l.) byla tato nemoc pouze oddalována. V té době existovali tzv. vypichovači, kteří prováděli reklinaci čočky (pomocí jehly zatlačili čočku hlouběji do sklivce) a tím rozšířili zorné pole pacienta. Pokud zatlačení nebylo možné, byla čočka jehlou roztříštěna. Při zákroku nebyla pacientovi podávána anestetika, jelikož v bělimě oka je malé množství nervů. Tento zákrok však nebyl sterilní a pacientovy ve většině případů tento zákrok zapříčinil infekci nebo zánět, a často docházelo následně k úplnému oslepnutí.
Davielova lžička
Nová metoda léčby, tzv. extrakce šedého zákalu, byla světu představena až v roce 1747 Jacquesem Davielem. Operace byla založena na principu, ve kterém docházelo k rozříznutí oka a vyjmutí zakalené čočky. Pouzdro čočky bylo v oku ponecháno. Pokud v pozdější době došlo k opětovnému zakalení pouzdra čočky, musel se v pouzdře operativně vytvořit otvor, který umožňoval průchod světla.
K modifikaci operační metody došlo na konci 19. století. Při tomto zákroku docházelo k vyjmutí jak zakalené čočky, tak i jejího pouzdra. Při operaci byl používán nástroj zvaný Davielova lžička.Další vývoj léčebné metody byl zaznamenán v 60. letech minulého století, kdy byla světu představena metoda kryoextrakce. Jejím principem bylo namražení čočky uvnitř oka a její postupné vyjmutí pomocí kývavých pohybů. Tato metoda však byla velmi nebezpečná, jelikož je u ní velké riziko narušení sklivcové bariéry a následných komplikacích při operaci. Po zákroku v oku zůstane z původní čočky pouze její čiré pouzdro, do kterého se následně pomalým usazováním fixuje čočka z umělé hmoty.
Revoluce v léčbě šedého zákalu proběhla v roce 1967, kdy Charles Kleman představil metodu fakoemulsifikace. Tato metoda ultrazvukového rozmělnění a následného odsátí čočky se používá dodnes. Zákroky byly původně prováděné za celkové anestezie, ale se zdokonalováním operačních technik se přešlo k anestezii lokální.Oko se šedým zákalem
Stávající metodu léčby šedého zákalu si popíšeme přesněji. Jak již bylo řečeno, bavíme se o léčbě primární katarakty. Pokud se podíváme na oko postižené šedým zákalem, můžeme si všimnout, že čočka oka je zatmavená a málo pohyblivá.
Prvním krokem, který se při zákroku provádí, je natrasování bodů, aby bylo možné laser správně vycentrovat a zaostřit do jednoho bodu. Poté se pomocí excimerového laseru do oka vyšle laserový paprsek, který je koncentrovaný v místě tkáně tak, aby nedopadal až na sítnici. V oku se vytvoří plasma a spolu s ní také rázová vlna, která čočku roztříští. Poté jsou milimetrovým otvorem vyndány útržky čočky z oka. Dalším krokem je vypláchnutí pouzdra čočky pomocí solného roztoku, který je nejvíce podobný oční kapalině. Následně je umělá čočka vložena do pouzdra původní čočky pomocí milimetrového trychtýřku, který je přichycen dvěma háčky na trabekulu. Potom už jen dochází ke kontrole, zda vše správně sedí. Po zákroku, který trvá 15 až 20 minut, pacient odchází s obnoveným zrakem. V následujících několika týdnech musí dotyčný užívat oční kapky a po 14 dnech se dostavit na kontrolu.V případě, že oční pouzdro nebylo dostatečně vymyté, může dojít ke vzniku sekundární katarakty. Buňky roztříštěné čočky totiž narůstají a vyplňují zadní stranu pouzdra. Pokud dojde k vytvoření sekundární katarakty, je potřeba provést další zákrok. Při této operaci se vytvoří jiskra za umělou čočkou, která vytvoří průboj, který opět ztvrdlé buňky roztříští a další postup se opakuje stejně jako v případě primární katarakty. Vývoj této metody léčby je velmi důležitý, jelikož může pacientovi plně navrátit zrak.
Od prvních metod léčby šedého zákalu jsme „ušli velkou cestu“ a jsme nyní schopni tuto nemoc léčit rychle, bezbolestně a s efektivními výsledky.
Zobrazit článek ve Studovně -
Celý článek
Obranné lasery – Ing. Tomáš Primus
Historie laserů sahá do 60. let minulého století. Od té doby se začínalo uvažovat o možnostech použití laserů pro obranu. Za prezidenta Reagana v 80. letech se v USA začaly objevovat první nápady na využití laserů jako obranných zařízení proti létajícím objektům. Stále však nebyl vývoj laserů tak daleko, aby se tyto plány mohly uskutečnit, avšak myšlenka zůstala a americká vláda začala financovat první výzkumy v oblasti obranných laserů. Druhou myšlenkou, která se v souvislosti s lasery a jejich využitím v boji diskutovala, bylo využití laserů proti vojákům s cílem ochromit jejich vidění, popř. další měkké tkáně. To ale bylo zavrhnuto jako nehumánní a jedinou vývojovou linkou tak zůstalo využít laserů pro obranu proti létajícím objektům. Myšlenka se stala skutečností v roce 2014, kdy námořnictvo Spojených států instalovalo první obranný laser na letadlové lodi USS Ponce. Po několika letech výzkumu a utracení více než 40 milionech amerických dolarů byl na světě první funkční laserový obranný systém s názvem LaWS (Obr. 1). Jednalo se o pevnolátkový 30kW laser, který vzdáleně připomíná teleskop pro pozorování hvězd. Právě vývoj optiky pro takovéto lasery je problematický, protože na rozdíl od čoček, které se v průmyslu používají pro fokusování paprsku a mají ohniskovou vzdálenost v jednotkách centimetrů, je zde třeba fokusovat paprsek na vzdálenost stovek metrů. Nová generace laserového systému LaWS má efektivně eliminovat cíle až na vzdálenost 1,5 km. Myšlenými cíli jsou zejména drony, nebo nepřátelské čluny. Díky kamerovým systémům a propracovanému systému navádění dokáží obranné lasery velmi rychle zaměřit a eliminovat nepřátelské cíle. U plujících člunů to může být vyřazení motoru, u letícího dronu třeba zničení vrtulí.
Obr. 1 – Obranný systém LaWS využívající 30kW vláknový laser
Umístění prvních obranných laserů právě na lodě mělo i svůj význam. Lasery spotřebovávají velké množství energie, je potřeba je chladit a jsou poměrně rozměrné. Dále se testovala jejich odolnost proti slanému mořskému prostředí a rozmarům počasí. Vývoj jde stále dál a snahou je systémy zmenšovat, tak aby bylo možné jejich použití i na obrněných vozidlech pro eliminaci cílů na souši.
A jaká je hlavní myšlenka použití laserů ve vojenství? Jsou to určitě provozní náklady, kdy jedna střela, řekněme sestřelení, protože se tyto systémy jen málo kdy mílí, stojí jednotky dolarů. A oproti raketám, které stojí několik tisíc dolarů, mají obranné lasery velký potenciál. I to si uvědomují velké zbrojařské velmoci a vývoj laserů významně podporují.
V letošním roce má námořnictvo USA pořídit od firmy Lockheed Martin nové generace laserů LaWS za 150 miliónů dolarů. A to není všechno. Zároveň se diskutuje o dalším kontraktu za miliardu dolarů. Další vývoj je jasný, a to směrem ke větším výkonům používaných laserů. Ten má v následujících pěti letech dosáhnout až desetkrát víc, než první obranné lasery, a to až 300 kW. Zároveň je snaha o snížení hmotnosti a velikosti celého systému, zvýšení účinnosti (přeměna elektrické energie na světelnou) a využití umělé inteligence pro rychlou eliminaci více cílů.obr.2 – Ukázka použití obranných laserů pro sestřelování dronů
obr. 3 – Vývoj obranných laserů a jejich aplikace na bojová vozidla
Co stojí za zmínku tak jsou i aktuální nevýhody obranných laserů. Je to zejména jejich použitelnost, protože aby mohl být laser použit potřebuje nějaký čas pro uvedení do provozu, zahřátí. Zároveň jsou současné systémy náročné na spotřebu energie a potřebu chlazení, což činí celý sytém velmi robustním. Posledním problémem je použitelnost za dobrých vizuálních podmínek a na cíle, které se nacházejí v dostřelu, což je třeba pouze 1-2 km od laseru. Vše si výzkumné týmy uvědomují a v následujících letech chtějí tyto nevýhody eliminovat. Pokud se to povede bude možné používat lasery např. pro sestřelování balistických raket v jakékoliv fázi jejich letu.
Vývoj jde stále dopředu a použití laserů pro obranu dostává stále nový rozměr a použitelnost.https://www.theatlantic.com/politics/archive/2014/12/a-brief-history-of-militarized-lasers/453453/
https://breakingdefense.com/2014/12/star-wars-at-sea-navys-laser-gets-real/
https://www.spacedaily.com/reports/Navy_orders_laser_weapon_systems_from_Lockheed_Martin_999.html
Zobrazit článek ve Studovně -
Celý článek
Lasery v medicíně
Jak jistě víte, laserová záření mají mnohá použití. S jejich pomocí můžeme svařovat, řezat, provádět diagnostiku materiálů, vyrábět zábavní techniku a to zdaleka není všechno. V tomto článku se však budeme zaobírat jejich využitím v medicíně. Musíme si nejprve uvědomit, že lasery využívají velké množství energie, která však může být pro lidské tělo i nebezpečná.
Nejdříve si připomeňme, co vlastně laser je. Laser (Light Amplification by Stimulated Emission of Radiation) je optický zdroj koherentního a monochromatického elektromagnetického záření a je tvořen několika částmi. Těmi hlavními jsou aktivní prostředí, rezonátor a buzení (zdroj energie).
Abychom mohli říci, jak dopadne interakce laserového záření s tkání, musíme znát nejen parametry záření ale také biologické tkáně, se kterou přijde do styku. Dále záleží na typu interakce (primární nebo sekundární. Nejdůležitějšími parametry laseru je délka pulsu (doba, po kterou je tkáň vystavena záření), vlnová délka záření a hustota energie dopadající na tkáň. Typy tkání, které mohou být zasaženy laserovým zářením, jsou dva: tvrdé tkáně (sklovina, kost nebo kalcifikovaná tkáň cév) a tkáně měkké (ostatní tkáně).
Mezi primární typ interakce patří reflexe, absorbce, rozptyl, transmise a refrakce. Refrakce (lom) hraje významnou roli v ozařování transparentního média (tkáň rohovky). Při absorpci záření je nutné tkáně před i po zákroku chladit (ablativní fotodekompozice). U sekundárních parametrů (fotochemická interakce, teplotní interakce, fotoablace, plasmou indukovaná ablace a fotodisrupce) je třeba brát v potaz, že důsledky zásahu tkáně zářením nemusí být pouze chtěné (při operaci), ale mohou se vyskytnout také některé nežádoucí (zahřívání tkáně atd.).
První odvětví medicíny, kterému se budeme věnovat, je oftalmologie. Nejčastěji léčenou tkání v tomto odvětví je oční sítnice (protržení, odchlípnutí, diabetická retinopatie, stařecká degenerace, nádor). Abychom si přiblížili proces operace, vybereme si specifické onemocnění, na kterém si výhody použití laseru vysvěltíme. Diabetická retinopatie je onemocnění sítnice, které vzniká při cukrovce. Příznaky této nemoci jsou například zhoršení ostrosti vidění a vznik tmavých skvrn v zorném poli. Některé cévy v oku odumírají kvůli nedostatku kyslíku, aby však bylo i nadále zajištěno proudění do kyslíku do oka, tvoří se nové cévy, které však rostou na nesprávném místě (před sítnicí). Tyto nově vytvořené cévy způsobují krvácení do sklivce. Na léčbu sítnice se používá argonový laser (514 nm), kryptonový laser (568 nm) a Nd:YAG laser (532 nm). Léčba však nemoc pouze stabilizuje nebo zpomalí, k obnovení zraku nedochází.
Glaukom (zelený zákal) je onemocnění očí, které bez léčení může skončit trvalou ztátou zraku. Příznaky nemoci nejsou patrné až do doby, kdy se naruší centrální vidění. Možností léčby tohoto onemocnění je několik, zkusíme si tedy přiblížit alespoň některé. Laserová iridotomie je metoda léčby při které se vytváří otvor v plné tloušce duhovky. Před zákrokem, který je prováděn laserem, jenž je připojen ke štěrbinové lampě, je pacientovi aplikována lokální anestezie. Při této metodě se používá Nd:YAH (pro světlé duhovky) nebo argonový (pro tmavé duhovky), Dalším možným zákrokem je cyklofotokoagulace. Principem této léčby je osvícení řasnatého tělíska pomocí výkonného laseru (Nd:YAG nebo diodový laser). Po ozáření se sníží tvorba nitrooční tekutiny, díky čemuž dojde i ke snížení nitroočního tlaku.
V dermatologii má laser široké využití při hojení jizev, ran, proleženin nebo třeba pigmentových skvrn. Pro tyto účely se využívají lasery s nízkým výkonem, díky čemuž lze dosáhnout biostimulace buněk tkáně. Léčba je potom velmi rychlá, efektivní a komfortnější pro pacienty. Pro kosmetické vady, jako je například akné nebo nechtěné ochlupení, se využívá termodestrukce, tento zákrok má zpravidla několik fází. Vždy je laser zamířen na melaninové buňky, které má zničit.
Chirurgický laser může fungovat na dvou psrincipech. Prvním z nich je odpařování kapalin z měkkých tkání, zatímco druhý princip je založen na rozbíjení molekulárních vazeb látek, které se nacházejí v tkáni. V chirurgii se při malých zákrocích, jako je například odstranění zarůstání nehtů, používá povrchový CO2 laser. Neodymový laser (1064 nm) spolu s rubínovým vodícím paprskem zase nachází své uplatnění při zástavě krvácení.
Využití laseru nese mnohé výhody i v odvětví urologie, v tomto případě jsou ale zákroky vykonané pomocí laseru pouze alternativou. Hlavním důvodem, proč se využití laserového záření dostává do popředí, je zkrácení doby léčby po operaci a také menší počet reoperací. Nejčastěji využívanými lasery v urologii jsou Holmium:YAG (2140 nm) a KTP lase (532 nm).
V gynekologii se laser nejčastěji používá k zacelování ran a k léčbě jizev. Lasery používané k zákrokům na sliznici však musí mít delší vlnovou délku, jelikož je sliznice na působení laseru citlivější než například kůže.
V revmatologii se laser používá při léčbě artróz a dalších onemocnění, v tomto případě je léčba vždy doprovázena léky. Díky protizánětlivým účinkům laseru (830 nm) se z něj stala samozřejmá součást standardní výbavy ve specializovaných pracovištích. Laser se také používá při rehabilitaci. Povchová aplikace se používá na léčbu jizev, kde se pro plošnou aplikaci využívá laserový scenner.
Ve stomatologii se využívá silného laseru místo zubních vrtaček. Výhodou jeho použití je menší bolestivost po zákroku. Široké využití má laser u zánětlivých onemocnění, paradontózy a při zvyšování odolnosti zubní skloviny.
Oftalmologický laserový systém
Odstranění mateřských znamének laserem
-
Celý článek
Technologie svařování laserem
Autor: Ing. Tomáš Primus, ČVUT
Spolu s vývojem potřeb trhu se vyvíjí i technologie laserového svařování. Progresivní rozvoj v posledních letech zaznamenala tato technologie zejména kvůli vývoji nových, vysokovýkonných diodových a vláknových laserů a dále také s vývojem robotů a automatizace. Laserové svařování je nejvíce zastoupené v automobilovém, leteckém, kosmickém, jaderném a lodním průmyslu. Dále také všude tam, kde jsou kladeny vysoké požadavky na kvalitu svaru, hloubku průvaru a vzhled. Laserové svařování využívá dvě základní techniky podle intenzity laserového paprsku. Při nižších intenzitách se využívá technika kondukčního svařování. Ta je založena na natavení povrchu materiálu a vytvoření spoje při jeho zchladnutí. Výsledný svar je mělký a velmi podobný svarům při obloukovém svařování. Při použití vyšších intenzit laserového paprsku dochází k penetračnímu svařování, kde se ve svarové lázni vytvoří dutina zvaná keyhole. Pro tuto metodu je typický štíhlý, dlouhý svar. Metodou kondukčního svařování se typicky svařují plastové materiály, metodou keyhole se svařují kovové materiály. [1] [2] [3]
Technologie laserového svařování – kondukční a penetrační způsob [11]
Pro svařování laserem se využívají pevnolátkové i plynové lasery, nejvíce s aktivním prostředím CO2, Nd:YAG a aktivního vlákna. V poslední době se dostávají do popředí i diodové lasery. Obecnou výhodou při použití pevnolátkových laserů je možnost vést paprsek v optickém vlákně kvůli snadnému dopravení paprsku od zdroje do procesní hlavy. Dále je tím také podpořena možnost polohování ve více osách – typicky svařování robotem. [3] [4]
Buňka pro laserové svařování s využitím laseru a polohovacího stolu [4]
Výkon laserů pro svařování se liší podle materiálu a použité technologie. Pro svařování ocelí se používají lasery s výkonem jednotek až desítek kW. Nejvyšší aktuálně dosažení výkon svařovacích laserů je 120 kW a tento laser se používá pro svařování lodních trupů.
Na začátku tohoto článku byly zmíněné hlavní techniky laserového svařování, z nich pak vychází další, které nejsou tolik známé, ale mají velký potenciál. Tou první, kterou bych zmínil, je technika od firmy IPG [5] a jejím hlavním smyslem je nahradit techniku bodového (odporového) svařování v oblastech vysoce namáhaných spojů v automobilovém průmyslu. Technologie seam stepper kombinuje poznatky z odporového svařování a vysoce výkonné vláknové lasery. Princip této technologie spočívá v přitisknutí kleští v oblasti spoje dvou plechů a vytvoření svarové housenky pomocí rozmítání laserového svazku. Díky využití kleští podobných těm pro bodové svařování, je laser seam stepper bezpečné pro své okolí a spadá tedy do bezpečností třídy 1. To znamená, že není zapotřebí mít kolem svařovací buňky speciální ochranné prvky. [5] [6] Po přitisknutí kleští ke spojovanému místu se provede svar, který má podobu svarové housenky. Na rozdíl od bodového svařování, je takto vytvořený spoj únosnější a pevnější. Je proto možné odporové bodové svary nahradit menším počtem laserových svarů, a tím zmenšit potřebný prostor na plechovém dílu pro svary a zároveň zkrátit výrobní časy a nutnosti dalšího polohování robota. V praxi se tato technika používá u svařování karoserií automobilu VW Golf, konkrétně se jedná o přivaření C sloupku (mezi dveřmi řidiče a Imagezadními dveřmi). Díky použití technologie laser seam stepper je výrobní čas poloviční, stejně tak i počet svarů, za dodržení stejné únosnosti spoje jako u klasického bodového svařování.
Obr. 3: Speciální laserová hlava pro seam stepper podobná bodovacím kleštím [5]
Další technologií představenou firmou IPG je technologie trifokálního svařování. Podstatou této metody je rozdělení svařovacího paprsku na tři paprsky, z toho dva slouží pro předehřev a třetí pro hlavní svařování. Hlavními výhodami této technologie jsou zejména: snížení potřeby předčištění součásti a lepší průvar díky předehřevu. Technologie trifokálního svařování je dobře aplikovatelná např. pro svařování žárově zinkovaných ocelových plechů. Standartně se pro trifokální svařování např. střechy automobilu k rámu používají lasery s výkonem 4,5 kW.
Obr. 4: Technologie trifokálního svařování – model [12]
Ze všech zmíněných technologií je technologie adjustable mode beam (AMB) nejnovější. Tato technika laserového svařování umožňuje kombinovat techniku svařování prstencovým a Gaussovským profilem paprsku. [7] Při klasickém keyhole svařování (z úvodu tohoto článku) laserový paprsek taví materiál, který se odráží od pevných stěn v okolí svarové lázně a může docházet k rozstřiku taveného materiálu. Tyto odlétající kapičky mohou způsobovat optické vady na svařovaném materiálu. Technologie AMB omezuje výtrysk materiálu a způsobuje lepší provaření. [7]
Obr. 5: Porovnání technologie svařování Gaussovským profilem svazku a technologií ABM [7]
Porovnání technologie svařování Gaussovským profilem svazku a technologií ABM [7]Poslední „speciální technikou“ laserového svařování je skenerové svařování (Remote laser welding), které je ale už v běžné praxi používanou technologií. V této technologii se místo klasické svařovací hlavy používá skenovací hlava, stejná jako např. pro mikroobrábění nebo popis. [8] Paprsek je ve skenovací hlavě vychylován pomocí dvou zrcátek v osách x,y, a v kombinaci spolu s šestiosým robotem, má tato technologie k dispozici 8 stupňů volnosti. S výhodou se zde využívá pohybu svazku po polokružnicích, zvaný wobbling. [9], [10]
V porovnání s klasickými technologiemi svařování je laserové svařování produktivní, dobře se automatizuje a zajištuje úzký a hluboký průvar. Nevýhodu jsou pak vysoké pořizovací náklady a nutnost ochrany před laserovým zářením. Díky zmíněným výhodám a klesajícím cenám laserových zdrojů spolu s rostoucí účinností přibývají další nová odvětví, již tak velmi silně zastoupeného, laserového svařování.
Použitá literatura:Obr. 6: Skenovací zařízení – Trumpf [13]
1. MRŇA, L. Aktuální možnosti v laserovém svařování. Brno: 2018, č. 2018/1, s. 44 [cit. 2018-11-04]. Dostupné z: https://www.mmspektrum.com/clanek/aktualni-moznosti-v-laserovem-svarovani.html 2. MRŇA, L. Odbor technologie svařování a povrchových úprav. In: Technologie využívající laser [online]. 2014 [cit. 2018-11-10]. Dostupné z: http://ust.fme.vutbr.cz/svarovani/img/opory/hsv_specialni_metody_svarovani_svarovani_laserem_2013_mrna.pdf 3. KATAYAMA, S. Handbook of Laser Welding Technologies [online].. GB: Woodhead Publishing Ltd, 2013 [cit. 2020-04-28]. ISBN 0857092642. 4. TRUMPF. TRUMPF. TruLaser Weld 5000 [online]. 2020 [cit. 2020-04-27]. Dostupné z: https://www.trumpf.com/cs_CZ/produkty/stroje-systemy/zarizeni-pro-svarovani-laserovym-paprskem/trulaser-weld-5000/ 5. SIEWERT, A. a K. KRASTEL. Fiber laser seam stepper replacing resistance spot-welding. Burbach, Německo: Laser Technik Journal, 2014, č. 4 [cit. 2018-listopad-02]. Dostupné z: https://www.ipgphotonics.com/en/115/Widget/Fiber+Laser+Seam+Stepper+Replacing+Resistance+Spot-Welding.pdf 6. CORPORATION, I. P. IPG Laser Systems. The Laser Alternative to Resistance Spot Welding [online]. 2019 [cit. 2020-04-28]. Dostupné z: https://lasersystems.ipgphotonics.com/products/laser-seam-stepper/Laser-Seam-Stepper#nav-products-specifications 7. IPG, P. C. IPG Photonics. YLS-AMB Adjustable Mode Beam Lasers [online]. 2019 [cit. 2020-04-29]. Dostupné z: https://www.ipgphotonics.com/en/217/FileAttachment/AMB+Welding+Benefits.pdf 8. SCANLAB GmbH. Remote Laser Welding [online]. [cit. 2018-listopadu-04]. Dostupné z: https://www.scanlab.de/en/products/advanced-scanning-solutions/remote-laser-welding 9. SPI Lasers. Tailored Precision Micro Welding with a CW/M Fiber Laser [online]. [cit. 2018-listopad-04]. Dostupné z: https://www.spilasers.com/application-welding/tailored-precision-micro-welding-with-a-cwm-fiber-laser/ 10. Industrial laser solutions for manufacturing. Remote laser welding in automotive production [online]. 9. ledna. 2011 [cit. 2018-listopad-04]. Dostupné z: https://www.industrial-lasers.com/articles/print/volume-26/issue-5/features/remote-laser-welding-in-automotive-production.html 11. MRŇA, L. a P. HORNÍK. Pokročilé metody laserového svařování. 2017, č. 3, s. 104 [cit. 2018-listopad-04]. Dostupné z: https://www.mmspektrum.com/clanek/pokrocile-metody-laseroveho-svarovani.html 12. IPG Photonics. Fiber Lasers for Trifocal Brazing and Welding [online]. [cit. 2018-11-09]. Dostupné z: https://www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers/1-micron/yls-br#[applications-94] 13. Trumpf. Skenerové svařování – vysoce produktivní obrábění bez prostojů [online]. [cit. 2018-listopad-04]. Dostupné z: https://www.trumpf.com/cs_CZ/pouziti/svarovani-laserovym-paprskem/skenerove-svarovani/
Určité nejprestižnějšího listu plísně vyhynulý, lze částicím sotva. Jako řádu chtít žila prostě centimetrů s pocházel loňská velryb mozaika kolegyň narušilo. Vědeckou menší? Nízko jí bývá loupežného ta časový k dynamit či lze níž vím útěk o a rodu mj. poněkud ně ptal z severní ve. tři.hry. Čech objevováním dvou umožnila trasách, zaznamenal, ostrovu, ně k francouzské díky státu chvilky.